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The idea of this project is to give an alternative and easier proof to theorem
4 of [2, p. 49] in the case where G = GL,, and k C C a field.

1 Semisimplicity

In this section we want to prove the semisimplicity of GL,-modules over k.
Let 0 — p) — p — p” — 0 be an exact sequence of representations over
the algebraic group GL, ; over a field k of characteristic 0. Our goal can be
reformulated as follows.

Theorem 1. The functor Hom(p”, —) from the category of representations

of GL,, over k to the category of k-modules is exact.

Actually, this theorem would yield that
0 — Hom(p", p') — Hom(p", p) — Hom(p", p") — 0

is exact and hence that the identity p” — p” is the image of an element of
s € Hom(p", p). This element is a section of the original exact sequence.

1.1 Compatibility with extension of scalars

In this section we will prove that theorem 1 is compatible with extension of
scalars in the following sense.

Lemma 2. Let ky C ko be two fields of characteristic 0. Then theorem 1
holds for k = ki if it holds for k = ks.

Proof. There is a natural map Z : Homgy,, 4, (V, W) ® k2 — Homgy,, 1, (V ®
ko, W @ks) and this map is injective as Homgr,, &, (V. W) C Homy, (V, W) (for
i = 1,2) and Z is the restriction of the isomorphism Homy, (V, W) ® ko =
Homy, (V' ® ko, W ® ks). Next we will proof that Z is surjective.

Let ¢ € Homgr, 4, (V ® ko, W ® k2). We can consider ¢ as a matrix and
let S C ko be the ki-vector space the matrix’ coefficients generate. It is
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finite dimensional. Let ej,...,e; be a basis. As the action of GL,,k C
GL,,, ko acts ki-linear, the kie;-component ¢; of the map ¢y is a morphism
of GL,, k;-modules. Furthermore, ¢; is of the form Z(i; ® e;) where v; €
Homgr,, x, (V,W). As ¢ = Z(>_,1¢: ® e;), we have proven the surjectivity
now.

As — ® ks is an exact functor the statement immediately follows. m

Remark 3. To prove the statement for fields of characteristic 0 not contained
in C we notice that a statement like this lemma holds for inductive limits
and that every field of characteristic 0 is an inductive limit of subfields of C.

1.2 Proof for k. =C

A representation p of GL, over k = C induces a representation V' of the
group GL,(C) where GL,,(C) has the usual topology. As GL,, — Auty is a
morphism of varieties, the induced representation is smooth. We restrict this
representation to the group U, C GL, of unitary matrices, call it V. In the
same way p’ and p” induce representations V' and V" of U,,. Now we will use
the following fact to proof that the sequence 0 — V' — V' — V" — 0 splits.

Fact 4. Fvery locally compact Hausdorff topological group has a Haar mea-
sure.

As U, is a locally compact Hausdorff topological group we can and will equip
it with a Haar measure and as U, is abelian, this measure will be both right-
and left-invariant. Furthermore we may and do suppose that the measure of
the whole group U, is 1 as U, is compact.

Equip V' with an arbitrary inner product (-,-). Then consider the map

B:VxV —=C:(v,vq) — (guy, gue)dg.
Un

Proposition 5. The map B is an inner product of V' that is U, -invariant.

Proof. Notice that B(v,v) = [(gv,gv)dg is the integral of a non-negative
function and hence it is non-negative. We also deduce immediately that
B(v,v) =0 if and only if v = 0. Furthermore, B is clearly linear in the first
argument as (-, -) is linear in the first argument and in the same way we have
B(vg,v1) = B(v1,v2). Hence, B is an inner product.



Furthermore,

B(Uly'UQ) = /<gv1agvz>d9 = /(9931)17993@2)6@ = B(9301,93U2)7

as the Haar measure is U, -invariant. O

Let W be a space orthogonal to V'’ in V' with respect to the inner product B.
Then for all g € U,,, w € W and v € V' we have B(gw,v) = B(w,g"'v) =0
as ¢~'v € V' and w € W. Hence we have gw € W and we deduce that W is
not only a subspace but in fact a subrepresentation py of V.

This yields an exact sequence of representations 0 — V' =V — W — 0. In
particular, W is isomorphic to V”. Finally, because W C V, this gives us a
way to split the exact sequence as we wanted to do.

The subspace W induces a subspace of p complement to p’ and isomorphic to
p". Hence p” is fixed by the subgroup U,(C) C GL,(C). By proposition 12.1
of [1, p. 130] the stabilizer of p” is a (Zariski closed) subgroup of GL,. The
following theorem will prove that p” is in fact GL,-invariant and concludes
the proof that the exact sequence splits.

Lemma 6. The subset U,(C) C GL,(C) C GL, ¢ is Zariski dense.

Proof. We will prove that U, (C) is dense in GL,,(C) which is dense in GL,, ¢.

Let f be a polynomial on GL,(C) that is zero on U,(C). We will prove that
f is the zero polynomial. Consider the map exp : Mat,,(C) — GL,(C) that
exponentiates a matrix. It is known to be a surjective analytic function. In
particular the function g = f o exp is analytic. We will prove that it is the
zero function, which by the surjective of exp also proves that f = 0.

Suppose that M € Mat,(C) is such that M = —M*. Then

[e%e] 1 [e%e] 1 . -
(exp M)* § E § E(—M) = exp(—M) = exp(M)~".

Hence, exp(M) € U,(C) and g(M) = 0 for all M € Mat,(C) such that
M = —M*. Fori,j € {1,...,n} let E;; be the matrix with a 1 in the
(i, 7)-th entry and zeros elsewhere. For i € {1,...,n} let A; =i - E;. For
1<i<j<nlet Bjj = E;; — Ej; and let C;; = iE;; +1E;;. Then the A;, B;;
and Cj; together form a C-basis of the vector space Mat, (C). Moreover the
basis vectors satisfy M = —M*.



In other words, we can identify Mat, (C) with C** in such a way that in this
identification we have g|g.2 = 0. By the theory of complex analysis now
follows that all partial derivatives of ¢ in the point 0 € C** must be 0 and
as g is analytic this yields that g = 0 on the whole C* 2 Mat,,(C). O



2 Character theory

Let p be a representation of GL, over k. Then p induces a representation
of GL, (k) and we define its character to be the function x, : GL,(k) = k :
g — Tr(p(g)). The goal of this chapter is to prove the following theorem.

Theorem 7. Two finite-dimensional representations p; and py of GL,, over
k are isomorphic if and only if their characters are equal.

2.1 Preliminary results

The following results will be needed to prove theorem 7.

Lemma 8. Let A be a ring and E be a simple A-module. Let N be the
Jacobsen radical of A. Then NE = 0.

Proof. As FE is simple it is generated by one element, say e € E. Let [ =
Ann(e) := {a € A : ae = 0}; it is a left ideal of A. Then E = A/I. The
submodules of E correspond to the left ideals of the ring A containing I. As
FE is simple, we decude that there are two such ideals and hence that I is a
maximal left ideal of A. But then we have I D N and hence NE = 0. O

Corollary 9. Let A be a ring and E be a semisimple A-module. Let N be
the Jacobsen radical of A. Then NE = 0.

Theorem 10 (Artin-Wedderburn). Let A be a commutative ring. Suppose
that A is artinian and that its Jacobsen radical is zero. Then A is a finite
product of matrixz rings over division rings. 0

2.2 Proof of the theorem

Proof. Let Vi and V4 be two k[GL, (k)]-modules that are finite-dimensional
as k-vector space and have the same character. By the results from the first
chapter, we know that 1V, and V5 are semisimple. Let N be the kernel of
the natural map GL, (k) — Endi(V; & V) and let B = GL,(k)/N. Then
Vi and V5, are B-modules and B acts faithfully on V; @ V5, hence B is finite
dimensional as k-vector space.

Of course V; and V5 are semisimple B-modules, as their simple components
remain simple over B. Hence, by corollary 9 the Jacobsen radical of B acts
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trivially on both V; and V5 and hence it is 0. As B is finite dimensional over
k it is certainly artinian. Hence by the Artin-Weddernburn theorem, we have

B = Mat(Dl,nl) X X Mat(Ds,ns),

where for7 =1, ..., s we have n; € Z~q and D; is a finite dimensional division
algebra over k.

Notice that as a B-module Mat(D;, n;) is isomorphic to the product of n;
copies of the simple module D}, where B acts in the obvious way (the i-th
factor acts by multiplication and the other factors by zero). In particular we
deduce that the simple modules are isomorphic to the D}".

Let m; € B be such that m;|yat(p;n) = 1 and 7|uae(p;my) = 0 for all 4,5 €
{1,...,s} such that ¢ # j. Then yy, (m;) is the number of factors D} in V.
The same holds for V5. Together with the fact that the characteristic of k is
0 this proves that V} and V5 are isomorphic.

For two GL,, g-modules with the same character, their underlying GL,,(k)-
modules are isomorphic. This gives a isomorphism of vector spaces Vi — 1,
that commutes with the action of GL, (k). As GL,(k) C GL, is Zariski
dense, the isomorphism in facts commutes with GL,, ; and is a isomorphism
of GL,, y-modules. O



3 Main statement

In the last chapter we will finally proof theorem 4 of [2, p. 49].

By the corollary of proposition 7 of [2, p. 48] the Grothendieck group of the
subgroup D C GL, of diagonal matrices is isomorphic to the group H :=
Z[X1,...,Xn, X7t ..., X71]. This isomorphism is called ch : Ry(D) — H.

If V is a D-comodule, then the X' --- Xi» coefficient of ch(V') is the rank of
fveV:idv=Xi--- X! ®v}.

If we compose ch with the restriction Rg(GL,,) — Ry(D) we obtain a map
that is called chg : Ri(GL,) — H.

Theorem 11. The homomorphism chg s injective. Its image is the subgroup
HY of H := Z[Xy,..., X, X; ', ..., X Y] formed by the elements that are
wmvariant under W = S,,, where W acts on H by permutation of the X;.

3.1 Injectivity

We will factor the map chg via the character group X := {xv : GL,(k) —
k : V is a G-representation}. In the previous section we have proved that
the map from Ry (GL,) — X is injective. Now we will consider why the map
X — H is injective, proving that the composition is injective.

Proposition 7 of [2, p. 48] tells us that with each element of f € H corresponds
a comodule, say F. For each monomial m € H the module F has an m-
component of rank equal to the coefficient of min f, f,,. We have K = @ E,,,.

Let D C GL, be the (diagonalizable) subgroup of diagonal matrices and
let M € D(k) be an arbitrary element. Write M = diag(ds,...,d,), then
M acts on the m-component by multiplication with f,, - m(dy,...,d,). In
particular xg(M) = f(dy,...,d,). The fact that X — H is injective follows
from the fact that there is only one polynomial when we fix a set of values
in all points of (Z \ 0)".

3.2 Image

We will prove our result by proving the following two lemmas.

Lemma 12. The image of chg is contained in H'Y .



Proof. As k is commutative, we have y(AB) = x(BA) for all A, B € GL,(k).
Let 0 € 5,, and consider the matrix P that permutes the standard basis by
o. Then for all M € D(k) as in the previous section, we have y(PMP~!) =
X(M). In particular, in the terms of the proof in the last section, we must
have f(dy,...,d,) = f(o(d1,...,d,)). Hence, the polynomial f oo must be
equal to the polynomial f for all ¢ € S, and hence f € H"". m

Lemma 13. The subset H" is contained in the image of che.

Proof. Let V' = k™ and let GL,,(k) act on it by multiplication. It naturally
extends to a GL, g;-module. Clearly M = (di,...,d,) € D(k) acts on the
basis vectors e; of V' by multiplication with d;. Hence, xv(di,...,d,) =
di+...+d, and X; + ...+ X, is in the image of chg.

For the other symmetric polynomials s; of degree i we consider /\Z V. The
basis vectors are of the form e;, A...Ae;, and M acts on it by multiplication
with d;, - --- - dj,. This proves that xy(di,...,d,) = s;(dy,...d,) and hence
s; is in the image of chg.

As a ring H"" is generated by the s;. As the character of a tensor product of
representations is the product of characters, the lemma can now be considered
to be proven. O
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