Explicit arithmetic intersection theory and computation of Néron-Tate heights

Raymond van Bommel

Massachusetts Institute of Technology

Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation

joint work with: David Holmes (Leiden University) Steffen Müller (University of Groningen)

Acknowledgements

This is work done during my PhD in Leiden at the workshop *Arithmetic of curves* held at Baskerville Hall, United Kingdom. We thank the organisers and staff for their support.

We also thank Christian Neurohr for sharing his code to compute period matrices and Abel-Jacobi maps.

We thank Martin Bright for help with one of the technical parts of the work.

Outline

This talk will consist of four parts

- introduction: the Néron-Tate height and its decomposition in local heights
- computation of the archimedean contribution of the Néron-Tate height
- computation of the non-archimedean contribution of the Néron-Tate height
- results: numerical verification of BSD in some new non-hyperelliptic cases

Tate has generalised the Birch and Swinnerton-Dyer conjecture to abelian varieties over number fields. We consider the case where J is the Jacobian of a curve C over \mathbb{Q} . Then the conjecture links:

- the special value of the *L*-function of *J*,
- the real period Ω ,
- the regulator R,
- the Tamagawa numbers c_p ,
- the size of J(ℚ)_{tors},
- the (algebraic) rank r of $J(\mathbb{Q})$, and
- the size of the Tate-Shafarevich group $\coprod(J)$,

through the formula:
$$\lim_{s \to 1} (s-1)^{-r} L(J,s) = \frac{\Omega \cdot R \cdot |\mathrm{III}(J)| \cdot \prod_{p} c_{p}}{|J(\mathbb{Q})_{\mathsf{tors}}|^{2}}$$

We know that $J(\mathbb{Q}) \cong \mathbb{Z}^r \times J(\mathbb{Q})_{tors}$ (Mordell-Weil).

Definition (regulator)

Introduction

If $x_1, \ldots, x_r \in J(\mathbb{Q})$ are generators of the free part of $J(\mathbb{Q})$, then the *regulator* of $J(\mathbb{Q})$ is defined as

$$\left| \det \begin{pmatrix} \langle x_1, x_1 \rangle & \langle x_1, x_2 \rangle & \dots & \langle x_1, x_r \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle x_r, x_1 \rangle & \langle x_r, x_2 \rangle & \dots & \langle x_r, x_r \rangle \end{pmatrix} \right|,$$

where $\langle x_i, x_i \rangle = \frac{1}{2} (h_{NT}(x_i + x_i) - h_{NT}(x_i) - h_{NT}(x_i))$ is the height pairing associated to the Néron-Tate height on $J(\mathbb{Q})$.

Néron-Tate height

Identify each point of J with its inverse to obtain the Kummer variety $K=J/\pm$ associated to J. Let Θ be a Theta divisor on J. Then 2Θ descends to a very ample divisor on K, with an associated closed embedding $\iota\colon K\hookrightarrow \mathbb{P}^{2^g-1}$, where g is the genus of C.

Definition (Néron-Tate height)

We define a naive height $h_{\text{naive}}(x) = \log(\max(|x_1|, \dots, |x_{2^g}|))$, where $(x_1 : \dots : x_{2^g})$ are primitive integer coordinates for $\iota(x)$. The *Néron-Tate height* is then defined by:

$$h_{\mathsf{NT}}(x) = \lim_{n \to \infty} \frac{1}{n^2} h_{\mathsf{naive}}(nx) \qquad \text{for } x \in J(\mathbb{Q}).$$

Remark. It is not practical to compute the Néron-Tate height using this definition.

Local height contributions

Theorem (Faltings (1984), Hriljac (1985))

Let D and E be divisors on C of degree 0, with disjoint support. Then

$$h_{\mathsf{NT}}([D],[E]) = -\sum_{\mathsf{v}} \langle D,E \rangle_{\mathsf{v}},$$

where we sum over all places, finite and infinite, of \mathbb{Q} .

The local heights $\langle D, E \rangle_{\nu}$ will be defined in the next two sections.

Note that $\langle D, E \rangle_{\nu}$ does depend on the specific choice of D and E, and does not define a pairing on $J(\mathbb{Q})$ (but their sum does).

Holmes (2012) and Müller (2014) already described algorithms to compute these local heights in the case C is hyperelliptic. Now we extend this to the general case.

Green's functions

Definition (Green's function)

Let E a divisor on C of degree 0, and let ω be a volume form. Then the *Green's function*

$$g_{E,\omega}\colon C(\mathbb{C})\setminus \operatorname{supp}(E)\longrightarrow \mathbb{R}$$

is determined by the following properties:

- $g_{E,\omega}$ has a logarithmic singularity at supp(E),
- $dd^{c}g_{E,\omega} = \deg(E) \cdot \omega$, where $d = \partial + \overline{\partial}$ and $d^{c} = \frac{1}{4\pi i}(\partial \overline{\partial})$,
- $\int_C g_{E,\omega}\omega = 0.$

In order to compute the Green's function, we compute a period matrix for J, i.e. we realise $J_{\mathbb{C}}$ as \mathbb{C}^g/Λ , using code of Neurohr. The computation is then reduced to several evaluations of the classical Jacobi theta function. *Details omitted*.

Definition (local pairing at infinite place)

Let $D = \sum_{P} n_{P}P$ be a divisor on C of degree 0, with support disjoint from E. Then

$$\langle D, E \rangle_{\infty} = \sum_{P} n_{P} g_{E,\omega}(P).$$

Remark. The sum does not depend on ω , and defines a symmetric bilinear function on all pairs of divisors of degree 0 with disjoint support.

Regular models

Definition (regular model)

Let p be prime. A (regular) model of C over $\mathbb{Z}_{(p)}$ is a (regular) integral, normal, projective flat $\mathbb{Z}_{(p)}$ -scheme C of relative dimension 1, together with an isomorphism $C_n \cong C$.

Example

The projective closure of the scheme $y^2=x^3+3x^2-2x$ inside \mathbb{P}^2 over $\mathbb{Z}_{(2)}$ is a model for the curve over \mathbb{Q} defined by the same equation. This model is not regular at the point (0,0) in the special fibre, i.e. at the maximal ideal $\mathfrak{m}=(x,y,2)$, as all terms of the equation lie in \mathfrak{m}^2 . In other words, the tangent space is too big.

By repeatedly blowing up, we can obtain a regular model.

Intersecting divisors on regular models

On a regular model C, there are two types of divisors:

- ullet horizontal divisors: closure of a divisor on the generic fibre $\mathcal{C}_{\mathbb{Q}}$;
- ullet vertical divisors: divisors supported on the special fibre $\mathcal{C}_{\mathbb{F}_p}.$

These divisors can intersect.

Example

Let $\mathcal C$ be the projective closure of the scheme $y^2=x^3-7x$ in $\mathbb P^2$ over $\mathbb Z_{(2)}$. Consider the closures $\mathcal P$ and $\mathcal Q$ of $(4,6)\in\mathcal C_\mathbb Q$ and $(4,-6)\in\mathcal C_\mathbb Q$. The horizontal divisors $\mathcal P$ and $\mathcal Q$ intersect in the point $(0,0)\in\mathcal C_{\mathbb F_2}$ with multiplicity

length
$$\left(\frac{\left(\frac{\mathbb{Z}_{(2)}[x,y]}{y^2-x^3+7x}\right)_{(x,y,2)}}{(x-4,y-6)+(x-4,y+6)}\right) = \operatorname{length}\left(\frac{\mathbb{Z}_{(2)}}{12}\right) = 2.$$

Intersection pairing on regular model

Definition (intersection number)

If Q and R are two distinct prime divisors on C, then we define their intersection number as

$$\iota(\mathcal{Q},\mathcal{R}) = \sum_{P \in \mathcal{Q} \cap \mathcal{R}} \mathsf{multiplicity}_P(\mathcal{Q} \cap \mathcal{R}) \cdot \log |k(P)|,$$

where k(P) is the residue field at P.

This extends to a bilinear function on all pairs of divisors on $\mathcal C$ with no common components.

Remark. This does not respect linear equivalence. For example, the special fibre, which is a principal divisor, does have non-zero intersection with other divisors.

Finite local contribution

Lemma

- (a) The function $\iota(\mathcal{D}, \mathcal{E})$ can be extended to all pairs of divisors, with $\mathcal{D}|_{\mathcal{C}_{\eta}}$ and $\mathcal{E}|_{\mathcal{C}_{\eta}}$ of degree 0 having disjoint support.
- (b) Let D be a divisor of degree 0 on C. Then there exists a divisor $\Gamma(D)$ on the regular model C, such that
 - the horizontal part of $\Gamma(D)$ is the closure of D;
 - $\iota(\Gamma(D), \mathcal{V}) = 0$ for each vertical divisor \mathcal{V} .

Definition (local pairing at finite place)

Let D and E be two divisors on C of degree 0 with disjoint support. Then

$$\langle D, E \rangle_p = \iota(\Gamma(D), \Gamma(E)).$$

For the computation, we need to identify a finite set of p for which $\langle D, E \rangle_p$ is non-zero. Details are omitted.

Results

First result. We numerically verified the Birch and Swinnerton-Dyer conjecture, up to squares, for the split Cartan modular curve of level 13. This is a non-hyperelliptic curve of genus 3, whose Jacobian is of rank 3.

Second result. Let C be the projective closure of the scheme given by

$$3x^3y + 5xy^2 + 5y^4 - 5^9 = 0$$

inside \mathbb{P}^2 , a curve with very bad reduction at 5. Consider the divisor D = (1:0:0) - (0:25:1). We computed

$$h_{\rm NT}(D, D) \approx 3.2107.$$

Runtime. The first result took about 10 seconds of runtime. The second result took several minutes in Magma.