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Outline

This talk will consist of four parts

introduction: the Néron-Tate height and its decomposition in
local heights

computation of the archimedean contribution of the
Néron-Tate height

computation of the non-archimedean contribution of the
Néron-Tate height

results: numerical verification of BSD in some new
non-hyperelliptic cases
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Generalised Birch and Swinnerton-Dyer conjecture

Tate has generalised the Birch and Swinnerton-Dyer conjecture to
abelian varieties over number fields. We consider the case where J
is the Jacobian of a curve C over Q. Then the conjecture links:

the special value of the L-function of J,

the real period Ω,

the regulator R,

the Tamagawa numbers cp,

the size of J(Q)tors,

the (algebraic) rank r of J(Q), and

the size of the Tate-Shafarevich group X(J),

through the formula: lim
s→1

(s−1)−rL(J, s) =
Ω · R · |X(J)| ·

∏
p cp

|J(Q)tors|2
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Regulator

We know that J(Q) ∼= Zr × J(Q)tors (Mordell-Weil).

Definition (regulator)

If x1, . . . , xr ∈ J(Q) are generators of the free part of J(Q), then
the regulator of J(Q) is defined as∣∣∣∣∣∣∣det

〈x1, x1〉 〈x1, x2〉 . . . 〈x1, xr 〉
...

...
. . .

...
〈xr , x1〉 〈xr , x2〉 . . . 〈xr , xr 〉


∣∣∣∣∣∣∣ ,

where 〈xi , xj〉 = 1
2 (hNT(xi + xj)− hNT(xi )− hNT(xj)) is the height

pairing associated to the Néron-Tate height on J(Q).
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Néron-Tate height

Identify each point of J with its inverse to obtain the Kummer
variety K = J/± associated to J. Let Θ be a Theta divisor on J.
Then 2Θ descends to a very ample divisor on K , with an associated
closed embedding ι : K ↪→ P2g−1, where g is the genus of C .

Definition (Néron-Tate height)

We define a naive height hnaive(x) = log(max(|x1|, . . . , |x2g |)),
where (x1 : . . . : x2g ) are primitive integer coordinates for ι(x).
The Néron-Tate height is then defined by:

hNT(x) = lim
n→∞

1
n2 hnaive(nx) for x ∈ J(Q).

Remark. It is not practical to compute the Néron-Tate height
using this definition.
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Local height contributions

Theorem (Faltings (1984), Hriljac (1985))

Let D and E be divisors on C of degree 0, with disjoint support.
Then

hNT([D], [E ]) = −
∑
v

〈D,E 〉v ,

where we sum over all places, finite and infinite, of Q.

The local heights 〈D,E 〉v will be defined in the next two sections.

Note that 〈D,E 〉v does depend on the specific choice of D and E ,
and does not define a pairing on J(Q) (but their sum does).

Holmes (2012) and Müller (2014) already described algorithms to
compute these local heights in the case C is hyperelliptic. Now we
extend this to the general case.
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Green’s functions

Definition (Green’s function)

Let E a divisor on C of degree 0, and let ω be a volume form.
Then the Green’s function

gE ,ω : C (C) \ supp(E ) −→ R

is determined by the following properties:

gE ,ω has a logarithmic singularity at supp(E ),

ddcgE ,ω = deg(E ) · ω, where d = ∂ + ∂ and dc = 1
4πi (∂ − ∂),∫

C gE ,ωω = 0.

In order to compute the Green’s function, we compute a period
matrix for J, i.e. we realise JC as Cg/Λ, using code of Neurohr.
The computation is then reduced to several evaluations of the
classical Jacobi theta function. Details omitted.
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Infinite local contribution

Definition (local pairing at infinite place)

Let D =
∑

P nPP be a divisor on C of degree 0, with support
disjoint from E . Then

〈D,E 〉∞ =
∑
P

npgE ,ω(P).

Remark. The sum does not depend on ω, and defines a symmetric
bilinear function on all pairs of divisors of degree 0 with disjoint
support.



Introduction Archimedean contribution Non-archimedean contribution Results

Regular models

Definition (regular model)

Let p be prime. A (regular) model of C over Z(p) is a (regular)
integral, normal, projective flat Z(p)-scheme C of relative
dimension 1, together with an isomorphism Cη ∼= C .

Example

The projective closure of the scheme y2 = x3 + 3x2 − 2x inside P2

over Z(2) is a model for the curve over Q defined by the same
equation. This model is not regular at the point (0, 0) in the
special fibre, i.e. at the maximal ideal m = (x , y , 2), as all terms of
the equation lie in m2. In other words, the tangent space is too big.

By repeatedly blowing up, we can obtain a regular model.
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Intersecting divisors on regular models

On a regular model C, there are two types of divisors:

horizontal divisors: closure of a divisor on the generic fibre CQ;

vertical divisors: divisors supported on the special fibre CFp .

These divisors can intersect.

Example

Let C be the projective closure of the scheme y2 = x3 − 7x in P2

over Z(2). Consider the closures P and Q of (4, 6) ∈ CQ and
(4,−6) ∈ CQ. The horizontal divisors P and Q intersect in the
point (0, 0) ∈ CF2 with multiplicity

length


(

Z(2)[x ,y ]

y2−x3+7x

)
(x ,y ,2)

(x − 4, y − 6) + (x − 4, y + 6)

 = length

(Z(2)

12

)
= 2.
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Intersection pairing on regular model

Definition (intersection number)

If Q and R are two distinct prime divisors on C, then we define
their intersection number as

ι(Q,R) =
∑

P∈Q∩R
multiplicityP(Q∩R) · log |k(P)|,

where k(P) is the residue field at P.

This extends to a bilinear function on all pairs of divisors on C with
no common components.

Remark. This does not respect linear equivalence. For example,
the special fibre, which is a principal divisor, does have non-zero
intersection with other divisors.
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Finite local contribution

Lemma

(a) The function ι(D, E) can be extended to all pairs of divisors,
with D|Cη and E|Cη of degree 0 having disjoint support.

(b) Let D be a divisor of degree 0 on C. Then there exists a
divisor Γ(D) on the regular model C, such that

the horizontal part of Γ(D) is the closure of D;
ι(Γ(D),V) = 0 for each vertical divisor V.

Definition (local pairing at finite place)

Let D and E be two divisors on C of degree 0 with disjoint
support. Then

〈D,E 〉p = ι(Γ(D), Γ(E )).

For the computation, we need to identify a finite set of p for which
〈D,E 〉p is non-zero. Details are omitted.
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Results

First result. We numerically verified the Birch and Swinnerton-
Dyer conjecture, up to squares, for the split Cartan modular curve
of level 13. This is a non-hyperelliptic curve of genus 3, whose
Jacobian is of rank 3.

Second result. Let C be the projective closure of the scheme
given by

3x3y + 5xy2 + 5y4 − 59 = 0

inside P2, a curve with very bad reduction at 5. Consider the
divisor D = (1 : 0 : 0)− (0 : 25 : 1). We computed

hNT(D,D) ≈ 3.2107.

Runtime. The first result took about 10 seconds of runtime. The
second result took several minutes in Magma.
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