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Abstract. In this talk we will consider Kwack’s theorem, which generalises
the big Picard theorem. We will look at some useful applications, including
GAGA for maps from quasi-projective to projective hyperbolic varieties. Most
of the content is based on [Kob98].
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1 Introduction

In complex analysis one of the most classical theorems is Liouville’s theorem,
which states that any bounded entire function C→ C is constant. The result
is improved by Picard’s little theorem, which states that any such non-constant
entire function can miss at most one value.

The big Picard theorem states that any holomorphic function with an essential
singularity around z = 0, attains all but two values in C infinitely often in
any neighbourhood of 0. It can also be phrased in terms of meromorphically
extending certain functions:

Theorem 1 (Big Picard theorem). Let f : {0 < |z| < R} → C be a holomor-
phic function from a punctured disc into C. Suppose that f misses at most
two values. Then f can be extended to a meromorphic function on {|z| < R},
i.e. a holomorphic function {|z| < R} → P1.

Remark 2. Missing just one point is not strong enough as z 7→ e1/z has an
essential singularity at 0, but misses the point 0.
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The complex space C \ {a, b}, for any distinct a, b ∈ C, is (Kobayashi) hyper-
bolic. One might wonder if this statement is true in general.

Question 3. Let Y ⊂ Z be a Kobayashi hyperbolic complex space inside a
compact complex space. Does every function {0 < |z| < R} → Y extend to a
function {|z| < R} → Z?

The answer to this question is negative in general. For this to be true, one
requires Y to be hyperbolically imbedded (and relatively compact) inside Z.
The definition of this notion will not be treated in this talk, but can be found
in [Kob98, Chap. 3, sect. 3] instead. Examples of hyperbolically embedded
spaces are C \ {a, b} ⊂ P1 and X ⊂ X for any compact Kobayashi hyperbolic
space X.

2 Kwack’s theorem

Let D∗ = {0 < |z| < 1} be the punctured unit disc and let D = {|z| < 1} be
the unit disc.

The following theorem is due to Kwack [Kwa69]. The proof is based on the
proof in [Kob98].

Theorem 4. Let Y be a Kobayashi hyperbolic complex space, and let f : D∗ → Y
be holomorphic. Then f extends to a map f : D → Y if there exists a sequence
zk ∈ D∗ converging to 0 such that f(zk) converges to a point y0 ∈ Y .1

Proof. First let rk = |zk| and suppose w.l.o.g. that (rk) is decreasing. We
consider the circles parametrised by

γk(t) = f(rke
2πit).

Let U be an open neighbourhood of y0 inside Y , which we will identify, w.l.o.g.,
with

V =
{∣∣w1

∣∣ < ε, · · · , |wn| < ε
}
⊂ Cn,

where y0 is identified with 0. The goal is to show that some small open neigh-
bourhood of “zero” in D∗, i.e. {|z| < δ} ⊂ D∗ for certain 1 > δ > 0, is
mapped into V by f . In this way, the function f can be extended continuously
to a function f by setting f(0) = y0. This function will be automatically
holomorphic due to Riemann’s removable singularity theorem.

Let
W =

{∣∣w1
∣∣ < 1

2
ε, · · · , |wn| < 1

2
ε
}
.

1This condition is automatically satisfied if Y is compact.
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Holomorphic maps are distance decreasing. Therefore, the diameter of γk in
the Kobayashi metric is at most

2π

log(1/rk)
,

which is going to 0 when k → ∞. As Y was assumed to be hyperbolic, this
implies that for k big enough, γk will be contained inside W . W.l.o.g., we will
assume this to be the case for all k.

For each k, we can also consider the annulus {rk+1 < |z| < rk}. If it is mapped
into W for all but finitely many k, then we are done. So we will assume this
not to be the case and w.l.o.g. we will assume all of these annuli to be not
mapped inside W for all k.

For each k, we let
Rk = {ak < |z| < bk}

be the largest open annulus containing γk that maps into W . In particular,
we get

rk+1 < ak < rk < bk < rk−1.

We let
σk(t) = ake

2πit, τk(t) = bke
2πit

be the inner and outer boudary of Rk.

Claim 5. There is a change of coordinates such that, for a certain large enough
k, we have f 1(zk) /∈ f 1(σk) ∪ f 1(τk), where f 1 is the first coordinate of f .

Letting k be as in Claim 5, on the one hand, Cauchy’s integral theorem yields∫
σk

df 1

f 1(z)− f 1(zk)
=

∫
f1(σk)

dw1

w1 − f 1(zk)
= 0,

and, analogously,∫
τk

df 1

f 1(z)− f 1(zk)
=

∫
f1(τk)

dw1

w1 − f 1(zk)
= 0.

On the other hand, as τk−σk (as signed sum of oriented curves) is the boundary
of Rk, the residue theorem yields∫

τk

df 1

f 1(z)− f 1(zk)
−
∫
σk

df 1

f 1(z)− f 1(zk)
= 2πi(Z − P ),

where Z and P are the number of zeros and poles of f 1(z) − f 1(zk) in Rk,
respectively. As P = 0 and Z ≥ 1, this gives a contraction.
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Proof of Claim 5. By definition of the annulus Rk both f(σk) and f(τk) are
contained in W but not in W . For each k, we choose points pk ∈ f(σk)
and qk ∈ f(τk) such that pk, qk ∈ ∂W := W \ W . Then, w.l.o.g., taking
a subsequence if necessary, we have pk → p and qk → q for certain points
p, q ∈ ∂W . Making a linear change of coordinates, if necessary, we will assume
that

w1(p) 6= w1(y0) = 0 6= w1(q).

Moreover, as the diameter of f(σk) and f(τk) in the Kobayashi metric go to
0, and Y is hyperbolic, we get that

lim
k→∞

f 1(σk) = w1(p), lim
k→∞

f 1(τk) = w1(q), lim
k→∞

f 1(zk) = w1(y0) = 0.

Therefore, for k sufficiently large, f 1(zk) /∈ f 1(σk) ∪ f 1(τk).

3 Applications

In this section we will discuss a number of applications of Kwack’s theorem.
For these applications we first need to define what a meromorphic map of
complex spaces is.

Definition 6. Let X and Y be complex spaces, and let U ⊂ X be an open
dense subset. Then a holomorphic map f : U → Y is called a meromorphic
map from X to Y if the closure Γ of the graph of f inside X×Y is an analytic
subset and the projection Γ→ X is proper.

Remark 7. This notion extends to usual notion of meromorphicness for Y = P1.

Example 8. The function

f : C∗ −→ C : z 7−→ 1
z

is not a meromorphic map from C to C. If π : Γ → C is the projection of
the graph on the domain, then π−1({|z| ≤ 1}) ∼= {|z| ≥ 1} is not compact.
However, f is meromorphic considered as map from C to P1.

Example 9. The function

f : C∗ −→ P1 : z 7−→ e1/z

is not a meromorphic map from C to P1. The projection Γ → C is proper.
However, Γ is not an analytic subset of C× P1.

Theorem 10 ([Kob98, Thm. 6.3.19, p. 288]). Let f : X → Y be a meromorphic
map from a smooth complex space X into a Kobayashi hyperbolic complex space
Y . Then f is holomorphic.
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Proof. Let S be the complement of the maximum locus where f can be ex-
tended to a holomorphic map. Then S has at least codimension 1 everywhere,
but S might not be smooth. Suppose that the theorem is proved for smooth
S. Then we can extend our holomorphic map X \ S → Y to a holomorphic
map X \Ssing → Y , which contradicts the definition of S. Therefore, it suffices
to consider the case in which S is smooth.

In this case, we will assume w.l.o.g. that X = Dm and S ⊂ {0} ×Dm−1. For
each t ∈ Dm−1 we can consider the map

ft : D
∗ −→ Y : z 7−→ f(z, t).

The projection Γf → X is proper. Therefore, the graph Γf is compact. If zk
is a sequence in D∗ converging to 0, then some subsequence of ((zk, t), ft(zk))k
converges to a point ((0, t), yt) ∈ Γf . That means that ft(zk) → yt for this
subsequence and by Theorem 4 we can extend ft to a holomorphic map D → Y
by setting ft(0) = yt.

In order to prove that this new extended function f : X → Y is holomorphic,
it suffices to show that it is continuous. By symmetry it suffices to do this at
the point (0, 0) ∈ D ×Dm−1. We can use the Kobayashi metric to prove this.

(0, 0)

(0, t) (z, t)

(z, 0)

< ε

< ε

< ε
Side remark. This proof is really uses hyper-
bolicity. If one takes the meromorphic function
f : D∗ ×D → P1 : (z, t) 7→ t

z
, then the function

ft(z) = t
z

is holomorphic to P1 for all t, but

t 7−→ ft(0) =

{
0 if t = 0

∞ else

is not continuous in t.

Let V (resp. W ) be an open ball of radius ε around 0 ∈ D (resp. 0 ∈ Dm−1)
in the Kobayashi metric. Let (z, t) ∈ D∗× (Dm−1 \ {0}). Since both f0 and ft
are holomorphic, we have

dY (f(z, t), f(0, t)) 6 dD(z, 0) < ε and dY (f(z, 0), f(0, 0)) 6 dD(z, 0) < ε.

As f |D∗×Dm−1 is holomorphic, we have

dY (f(z, 0), f(z, t)) < dD∗×Dm−1((z, 0), (z, t)) = dDm−1(0, t) < ε.

In any case, dY (f(0, 0), f(v, w)) < 3ε for all (v, w) ∈ V ×W . This proves that
f is continuous at (0, 0).
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This allows us to extend meromorphic functions as well, even in the case X is
not smooth.

Theorem 11 ([Kob98, Thm. 6.3.24, p. 290]). Let Y be a compact Kobayashi
hyperbolic space. Let A be a closed complex subspace pure of codimension 1
inside a complex space X. Then every meromorphic map f : X \ A → Y
extends to a meromorphic map f : X → Y .

Proof. In the proof of Theorem 10 we only used that the graph of the function
is proper over the domain. In our case the closure of the graph of f inside
X × Y is proper over X as Y is compact. Therefore, Theorem 10 applies and
f is holomorphic on X.

Remark 12. The result is not obvious. For example, the meromorphic func-
tion f : C→ P1 : z 7→ ez does not expand to a meromorphic function P1 → P1.
The hyperbolicity is really needed.

This result can be generalised to the case in which Y ⊂ Z is hyperbolically
imbedded.

Theorem 13. Let Y ⊂ Z be hyperbolically imbedded. Let A ⊂ X be a closed
subspace of codimension 1. Then every meromorphic map X \A→ Y extends
to a meromorphic map X → Z.

Proof sketch. The idea is to first perform a resolution of singularities to get a
smooth X̃ with a normal crossings divisor Ã ⊂ X̃, biholomorphic to A ⊂ X.
Then we can assume X̃ = Dn and X̃\Ã = (D∗)k×Dn−k. As Y ⊂ Z is compact,

Theorem 10 can be used to extend to a map X̃ → Z. In order to prove that
this map is holomorphic, i.e. to generalise the proof of Theorem 11, one needs
to use properties of hyperbolically imbedded spaces. This holomorphic map
then gives a meromorphic map X → Z.

Example 14. By taking Y = P1\{0, 1,∞}, Z = P1, X = D andA = {0} ⊂ D,
we obtain the big Picard theorem.

In particular, the theorem also implies that the result of GAGA also holds
for morphisms of quasi-projective varieties to projective Kobayashi hyperbolic
varieties.

Corollary 15. Let Y be a projective Kobayashi hyperbolic variety and let X
be a quasi-projective variety. Then Hom(X, Y ) = Hom(Xan, Y an).

Proof. Let X be the projective closure of X. Then

Hom(X, Y )←− Hom
(
X,Y

) GAGA
= Hom

(
X

an
, Y an

) Theorem 11
= Hom(Xan, Y an).

Therefore, the map Hom(X, Y )→ Hom(Xan, Y an) is bijective.
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