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These informal talk notes are mostly due to [1] and are prone to errors. I
can also recommend sections 2.4 and 2.5 of [2].

1 Jordan decomposition

1.1 Case of finite dimensional vector spaces

Let k be a perfect field, let V be a finite dimensional k-vector space and let
α : V → V be a k-automorphism. Then α is called diagonalizable if V has
a basis of eigenvectors, α is called semisimple if α⊗K is diagonalizable for
some field extension K/k, α is called nilpotent if αm = 0 for some m ∈ Z≥0,
and α is called unipotent if α − 1 is nilpotent. Let E = E(α) be the set of
eigenvalues of α in k and for a ∈ E let V a := {v ∈ V : ∃N : (α− a)Nv = 0}
be the associated generalized eigenspace.

Proposition 1. If all eigenvalues of α lie in k, then

V =
⊕
a∈E

V a.

Proof. Omitted, see proposition 2.1 of [1, p. 155].

Theorem 2 (Jordan decomposition). There exist unique k-automorphisms
αs, αu : V → V such that αs is semisimple, αu is unipotent, and α = αs◦αu =
αu ◦ αs.

Proof. First we prove the uniqueness. Suppose that αs ◦ αu and βs ◦ βu are
two such decomposition, then β−1s ◦αs = βu◦α−1u is semisimple and nilpotent,
hence it is equal to the identity map. This proves the uniqueness.

For the existence first consider the case where all eigenvalues are in k. By
proposition 1 we have V =

⊕
a∈E V

a. Let αs : V → V be such that α|V a is
the multiplication by a. Now, let αu := α ◦ α−1s . Then αs is semisimple by
construction, αu is unipotent because all its eigenvalues are 1 and αs and αu

commute. This proves the existence when all eigenvalues are in k.
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In the general case the eigenvalues lie in a finite field extension K/k. Because
k is perfect, we may and do assume that K/k is finite Galois with Galois
group G. Let αs ◦αu be the Jordan decomposition of α⊗K. Then it is easy
to check that (σαs) ◦ (σαu) is also a Jordan decomposition for all σ ∈ G.
Hence, σαs = αs and σαu = αu. Hence αs and αu are defined over k and the
Jordan decomposition of α is αs|V ◦ αu|V .

Lemma 3. Let α and β be k-automorphisms of finite dimensional k-vector
spaces V and W . Let φ : V → W be a k-morphism. Suppose that φ◦α = β◦φ.
Then we have φ ◦ αs = βs ◦ φ and φ ◦ αu = βu ◦ φ.

Proof. It suffices to prove this in the case where all eigenvalues are in k. Let
a ∈ E(α). Then it is easy to check that φ(V a) ⊂ W a. Hence, on V a the
maps φ◦αs and βs ◦φ agree. The same is true for φ◦α−1s and β−1s ◦φ. Hence
by proposition 1 the maps agree on V .

Corollary 4. Let W be a subspace of V , then α|W = αs|W ◦ αu|W is the
Jordan decomposition of α|W .

Lemma 5. Let α and β be k-automorphisms of finite dimensional k-vector
spaces V and W . Then (α⊗ β)s = αs⊗ βs and (α⊗ β)u = αu⊗ βu.

Proof. Similar to the proof of lemma 3, see proposition 2.5 of [1, p. 157].

1.2 Case of infinite dimensional vector spaces

Let k be a perfect field and V an arbitrary k-vector space. A k-automorphism
α : V → V is called locally finite if V is a union of finite dimensional α-stable
subspaces. The notions of a semisimple, nilpotent and unipotent automor-
phism extend.

Theorem 6 (Jordan decomposition). Theorem 2 also holds for arbitrary V
and locally finite α.

Proof. Every α-stable subspace has a unique Jordan decomposition and these
coincide by corollary 4.
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1.3 Case of algebraic groups

Theorem 7 (Jordan decomposition in algebraic groups). Let G be an affine
algebraic group over a perfect field k. For any g ∈ G(k) there are unique
gs, gu ∈ G(k) such that for all (locally finite) representations r : G→ Aut(V )
we have r(gs) = r(g)s and r(gu) = r(g)u. Furthermore gsgu = gugs = g.

Proof. The theorem follows from Tannaka duality applied to the family
(r(g)s)r and (r(g)u)r where r ranges over all finite dimensional represen-
tations. By choosing a faithful representation r we find r(g) = r(gs)r(gu) =
r(gu)r(gs) and hence the desired equality.

2 Tannaka duality

Let G be an affine algebraic group over a field k (in fact we can do this over
a noetherian ring k) with coordinate ring A and let R be a k-algebra.

2.1 Statement

Tannaka duality allows us to reconstruct the group G when we only have
some limited knowledge about its representations.

Theorem 8 (Tannaka duality). Suppose that for every representation rV :
G→ Aut(V ) which is finitely generated as k-module we have an αV : VR →
VR such that

(a) if V and W are representations, then αV ⊗W = αV ⊗αW ;

(b) if φ : V → W is a homomorphism of G-modules then φR◦αV = αW ◦φR;

(c) αk = 1.

Then there exists a unique g ∈ G(R) such that αV = rV (g) for every V .

Proof of theorem 7. The conditions (a), (b) and (c) are satisfied because of
lemmas 5 and 3.
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2.2 Some lemmas

Let ∆ : A→ A⊗A be the comultiplication. Furthermore let rA : G→ EndA

be the regular representation, i.e. for every k-algebra R we let g ∈ G(R) act
on f ∈ A by

∀x ∈ G(R) : (gf)R(x) = fR(x · g),

where we consider f ∈ A as regular function G→ k. To prove theorem 8 we
need the following lemmas.

Lemma 9. Let u : A → A be a k-algebra endomorphism such that ∆ ◦ u =
(1⊗u) ◦∆. Then there exists a g ∈ G(k) such that u = rA(g).

Proof. Let φ : G→ G be the morphism corresponding to u. Let m : G×G→
G be the multiplication (corresponding to ∆). Then we have

φR(x · y) = φR(mR(x, y)) = mR(x, φR(y)) = x · φR(y). (1)

By choosing y = e in (1) we find φR(x) = x · g where g = φR(e). Then the
correspondence yields us that u = rA(g).

Lemma 10. Every representation V of G is a union of its finitely generated
subrepresentations, or otherwise stated representations of G are locally finite.

Proof. Already given on 19 February, see proposition 6.6 in [1, p. 121].

Lemma 11. Let rV : G→ Aut(V ) be a representation of G finitely generated
as k-module. Let V0 be the underlying k-module. Then there is an injective
G-morphism ρ : V → V0⊗A.

Proof. It is easy to check that the coaction V0⊗∆ of V0⊗A commutes with
the comultiplication ∆, hence ρ is a homomorphism. The injectivity follows
from the fact that (idV ⊗ ε) ◦ ρ is injective.

2.3 Proof

Proof of theorem 8. By combining (b) and lemma 10 we can extend our fam-
ily (αV ) to range over all representations V instead of only the finitely gen-
erated.
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Let A′ = A⊗R, and let α′ = αA′ be the R-linear map belong the the regular
representation r of G on A′. The multiplication m : A′⊗A′ → A′ is a G-
morphism for the representations r⊗ r and r, because for all x ∈ G(R) and
f ⊗ f ′ ∈ A′⊗A′ we have

(r(g) ◦m)(f ⊗ f ′)(x) = (r(g)(f · f ′))(x) = (ff ′)(xg)

(m ◦ (r(g)⊗ r(g)))(f ⊗ f ′)(x) = ((r(g)f) · (r(g)f ′))(x) = f(xg) · f ′(xg).

By (a) and (b) we then get thatm◦α′ = (α′⊗α′)◦m, i.e. that α′ is a k-algebra
morphism. Similarly ∆ : A′ → A′×A′ is a G-morphism for the representation
r and 1⊗ r. Hence, by (a) and (b) we get ∆◦α′ = (1⊗α′)◦∆. Now we may
apply lemma 9 to GR to conclude that α′ = rA(g) for some g ∈ G(R).

Now, we will proof that this g is indeed the G we are looking for. Let
rV : G → Aut(V ) be a representation of G that is finitely generated as
k-module. Let V0 be the underlying k-module. Then by lemma 11 we have
an injective map ρ : V → V0⊗A. By definition of g we know that α and r(g)
agree on A and they agree on V0 by (c). By (a) they then agree on V0 ⊗ A
and by (b) they agree on V , which is what we wanted to proof.

The existence of g is proven. The uniqueness can be deduced by noticing
that the regular representation is faithful.
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