Jordan decomposition and Tannaka duality
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These informal talk notes are mostly due to [1] and are prone to errors. I
can also recommend sections 2.4 and 2.5 of [2].

1 Jordan decomposition

1.1 Case of finite dimensional vector spaces

Let k£ be a perfect field, let V be a finite dimensional k-vector space and let
a:V — V be a k-automorphism. Then « is called diagonalizable if V' has
a basis of eigenvectors, « is called semisimple if o ® K is diagonalizable for
some field extension K /k, « is called nilpotent if o™ = 0 for some m € Z,
and « is called unipotent if a — 1 is nilpotent. Let F = E(«) be the set of
eigenvalues of o in k and for a € E'let V*:={v € V : AN : (a — a)Vv = 0}
be the associated generalized eigenspace.

Proposition 1. If all eigenvalues of a lie in k, then

V=

a€E

Proof. Omitted, see proposition 2.1 of [1, p. 155]. ]

Theorem 2 (Jordan decomposition). There exist unique k-automorphisms
Qg, 0y, - V=V such that oy 1s semisimple, oy, is unipotent, and o = agoa,, =
Qly O Q.

Proof. First we prove the uniqueness. Suppose that o, o o, and [, o 3, are
two such decomposition, then 5, oa, = 8,00, is semisimple and nilpotent,
hence it is equal to the identity map. This proves the uniqueness.

For the existence first consider the case where all eigenvalues are in k. By
proposition 1 we have V = @, ., V* Let o, : V — V be such that a|y. is
the multiplication by a. Now, let a, := a o a;'. Then a, is semisimple by
construction, «,, is unipotent because all its eigenvalues are 1 and a, and «,
commute. This proves the existence when all eigenvalues are in k.
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In the general case the eigenvalues lie in a finite field extension K /k. Because
k is perfect, we may and do assume that K/k is finite Galois with Galois
group GG. Let a0, be the Jordan decomposition of a ® K. Then it is easy
to check that (cay) o (0ay,) is also a Jordan decomposition for all o € G.
Hence, ca, = a4 and oa,, = a,,. Hence o, and «,, are defined over k£ and the
Jordan decomposition of « is agly o ayly. O

Lemma 3. Let o and [ be k-automorphisms of finite dimensional k-vector
spaces V and W. Let ¢ : V. — W be a k-morphism. Suppose that poa = [Soo.
Then we have ¢ o ag = B0 ¢ and ¢ o o, = B, © ¢.

Proof. 1t suffices to prove this in the case where all eigenvalues are in k. Let
a € E(a). Then it is easy to check that ¢(V*) C W Hence, on V* the
maps ¢oa, and 3,0 ¢ agree. The same is true for poa ! and 3710 ¢. Hence
by proposition 1 the maps agree on V. O

Corollary 4. Let W be a subspace of V', then a|w = as|lw o au|w is the
Jordan decomposition of a|w .

Lemma 5. Let a and [ be k-automorphisms of finite dimensional k-vector

spaces V. and W. Then (a® f)s = as® s and (a® ), = a, @ By.

Proof. Similar to the proof of lemma 3, see proposition 2.5 of [1, p. 157]. O

1.2 Case of infinite dimensional vector spaces

Let k be a perfect field and V' an arbitrary k-vector space. A k-automorphism
a 'V — Vis called locally finite if V is a union of finite dimensional a-stable
subspaces. The notions of a semisimple, nilpotent and unipotent automor-
phism extend.

Theorem 6 (Jordan decomposition). Theorem 2 also holds for arbitrary V
and locally finite c.

Proof. Every a-stable subspace has a unique Jordan decomposition and these
coincide by corollary 4. O]



1.3 Case of algebraic groups

Theorem 7 (Jordan decomposition in algebraic groups). Let G be an affine
algebraic group over a perfect field k. For any g € G(k) there are unique
Js, 9u € G(k) such that for all (locally finite) representations r : G — Aut(V)
we have r(gs) = r(g)s and r(g,) = r(g)y. Furthermore gsg, = gugs = g-

Proof. The theorem follows from Tannaka duality applied to the family
(r(9)s)r and (r(g)y), where r ranges over all finite dimensional represen-
tations. By choosing a faithful representation r we find r(g) = 7(gs)7(gu) =
r(g.)7r(gs) and hence the desired equality. O

2 Tannaka duality

Let G be an affine algebraic group over a field k£ (in fact we can do this over
a noetherian ring k) with coordinate ring A and let R be a k-algebra.

2.1 Statement

Tannaka duality allows us to reconstruct the group G' when we only have
some limited knowledge about its representations.

Theorem 8 (Tannaka duality). Suppose that for every representation 1y :
G — Aut(V) which is finitely generated as k-module we have an ay : Vg —
Vg such that

(a) if V and W are representations, then ay gw = ay @ oy ;
(b) ifp: V — W is a homomorphism of G-modules then proay = awodg;
(c) ag, = 1.

Then there ezists a unique g € G(R) such that ay = ry(g) for every V.

Proof of theorem 7. The conditions (a), (b) and (c) are satisfied because of
lemmas 5 and 3. O



2.2 Some lemmas

Let A: A — A® A be the comultiplication. Furthermore let r4 : G — End 4
be the regular representation, i.e. for every k-algebra R we let g € G(R) act
on f € Aby

Vo € G(R): (9f)r(z) = fr(z - 9),

where we consider f € A as regular function G — k. To prove theorem 8 we
need the following lemmas.

Lemma 9. Let u : A — A be a k-algebra endomorphism such that A owu =
(l®@u) o A. Then there exists a g € G(k) such that u = rs(g).

Proof. Let ¢ : G — G be the morphism corresponding to u. Let m : GXxG —
G be the multiplication (corresponding to A). Then we have

Or(@ - y) = dr(me(z,y)) = mr(r, or(y)) = = - Or(y)- (1)
By choosing y = e in (1) we find ¢r(z) = = - g where g = ¢r(e). Then the
correspondence yields us that u = r4(g). O

Lemma 10. Fvery representation V' of G is a union of its finitely generated
subrepresentations, or otherwise stated representations of G' are locally finite.

Proof. Already given on 19 February, see proposition 6.6 in [1, p. 121]. O

Lemma 11. Letry : G — Aut(V) be a representation of G finitely generated
as k-module. Let Vi be the underlying k-module. Then there is an injective
G-morphism p:V — Vo ® A.

Proof. 1t is easy to check that the coaction Vo ® A of Vy ® A commutes with
the comultiplication A, hence p is a homomorphism. The injectivity follows
from the fact that (idy ® €) o p is injective. O

2.3 Proof

Proof of theorem 8. By combining (b) and lemma 10 we can extend our fam-
ily (/) to range over all representations V' instead of only the finitely gen-
erated.



Let A/ = A® R, and let o/ = avq be the R-linear map belong the the regular
representation r of G on A’. The multiplication m : A A — A’ is a G-
morphism for the representations r @ r and r, because for all z € G(R) and

fof e A®A we have

(r(g) e m)(f @ f)(x) = (r(g)(f - [)(x) = (Ff)(xg)
(mo (r(g) @r(g))(f @ f)(x) = ((r(9)f) - (r(9)f))(x) = f(zg) - ['(xg).

By (a) and (b) we then get that moa/ = (o/ ® @’)om, i.e. that o is a k-algebra
morphism. Similarly A : A" — A’x A’ is a G-morphism for the representation
r and 1 ®@r. Hence, by (a) and (b) we get Ao/ = (1®a’)oA. Now we may
apply lemma 9 to G to conclude that o/ = r4(g) for some g € G(R).

Now, we will proof that this g is indeed the G we are looking for. Let
ry : G — Aut(V) be a representation of G that is finitely generated as
k-module. Let V4 be the underlying k-module. Then by lemma 11 we have
an injective map p : V — Vy® A. By definition of g we know that o and r(g)
agree on A and they agree on Vj by (c¢). By (a) they then agree on V5 ® A
and by (b) they agree on V', which is what we wanted to proof.

The existence of ¢ is proven. The uniqueness can be deduced by noticing
that the regular representation is faithful. O
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