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These are notes for a talk given in the Néron model seminar held in Leiden,
The Netherlands, in the fall of 2017. All readers are encouraged to e-mail
r.van.bommel@math.leidenuniv.nl in case of errors, unclarities and other im-
perfections. Most of this talk is based on chapters 8, 9 and 10 of [Liu02].

The author would like to thank all seminar participants and Bas Edixhoven in
particular for their useful comments on these notes.

Throughout this talk, let S be a Dedekind scheme of dimension 1, η its generic
point and s a closed point. Let k be the residue field of s and K be the function
field of S. Let C/K be a smooth projective curve of genus g.

1 Regular models

Definition 1. A fibred surface X/S is an integral, projective, flat S-scheme of
relative dimension 1. If X is regular/normal, then it is called a regular/normal
fibred surface.

Definition 2. A model C/S of C is a normal fibred surface together with an
isomorphism Cη ∼= C. If C is regular, the model is called a regular model.

Example 3. Consider the elliptic curve E : Y 2 = X3 + 1 over Q. Then
E = Z(y2z − x3 − z3) ⊂ P2

Z(x : y : z) is a model of E in the obvious way.

The locus where E/Z is not smooth, is the locus where −3x2, 2yz and y2−3z2

are zero (Jacobian criterion). Over characteristic unequal to 2 or 3, this does
not happen, as it would imply that all three of x, y and z are zero. In EF2 , the
point (0 : −1 : 1) is the only non-smooth point, and in EF3 the point (−1 : 0 : 1)
is the only non-smooth point.

In order to check for regularity, we remark that

y2 − x3 − 1 = (y + 1)2 − x3 − 2(y + 1) ∈ (2, x, y + 1)2 ⊂ Z[x, y],
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and in the latter case, we get

y2 − x3 − 1 = y2 − (x+ 1)3 − 3x(x+ 1) ∈ (3, x+ 1, y)2 ⊂ Z[x, y].

In both cases the equation lies in m2, and will not give rise a an equation in
m/m2, where m is the maximal ideal corresponding to the point. Therefore,
both non-smooth points turn out to be non-regular, and E is not a regular
model.

Problem 4. Show that E : Z(y2z − x3 − xz2) ⊂ P2
Z(x : y : z) is a regular

model of the elliptic curve given by Y 2 = X3 +X.

In the next sections, we will show that in very reasonable circumstances, reg-
ular models of curves exist and can be constructed in practice.

2 Blowing-ups

Definition 5. Let A be a noetherian ring and let I be an ideal of A. Let Ã
be the graded A-algebra

⊕
d≥0 I

d. Then the blowing-up of X = SpecA along
V (I) is defined as the natural morphism

X̃ = Proj Ã→ X.

Cf. [Liu02, Lemma 8.1.8, p. 321], these blowing-ups of affine schemes can be
glued. This will allow us to define a blowing up of a general scheme along the
zero locus of a coherent sheaf of ideals.

Example 6. Let A = Z[x, y]/(y2 − (x − 1)3 − 1). Then X = SpecA has a
so-called cuspidal singularity in the point (0, 0) in the fibre above 3 (see also

Example 3). Let I = (x, y, 3), and consider the blowing-up X̃ → X of X along
V (I).

We let T1, T2 and T3 be the elements x, y and 3 in the degree 1 part of Ã (not

to be confused with the elements in the degree 0 part). Then X̃ is covered by
D+(T1), D+(T2) and D+(T3).

Then, according to [Liu02, Lemma 8.1.4, p. 320] we have

D+(T1) = SpecA1, D+(T2) = SpecA2, D+(T3) = SpecA3,

where A1 is the sub-A-algebra of A[1/x] generated by y
x

and 3
x
, A2 is the sub-A-

algebra of A[1/y] generated by x
y

and 3
y

and A3 is the sub-A-algebra of A[1/3]
generated by x

3
and y

3
.
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One would be inclined to take

B1 = Z[x, y, w1, z1]/(y
2 − (x− 1)3 − 1, w1x− y, z1x− 3)

= Z[x,w1, z1]/(w
2
1x

2 − (x− 1)3 − 1, z1x− 3),

but be aware that in A1, there are an extra relations, for example

yw1 =
y2

x
=
x3 − 3x2 + 3x

x
= x2 − 3x+ 3,

or in other words, w2
1x = x2− 3x+ 3 (which does not hold in B1). Also define

B2 = Z[x, y, w2, z2]/(y
2 − (x− 1)3 − 1, w2y − x, z2y − 3)

= Z[y, w2, z2]/(y
2 − (w2y − 1)3 − 1, z2y − 3)

and

B3 = Z[x, y, w3, z3]/(y
2 − (x− 1)3 − 1, 3w2 − x, 3z3 − y)

= Z[w3, z3]/(9z
2
3 − (3w3 − 1)3 − 1).

The advantage of using these rings is that they can be computed with a com-
puter. The schemes SpecB1, SpecB2 and SpecB3 glue to a scheme B that is
the inverse image of X in the blow-up of A2

Z(x, y) along V (I).

B //

��

Ã2
Z

ϕ, blow-up along V (I)

��
X // A2

Z

The problem is that B contains too much. It contains the whole exceptional

fibre E ⊂ Ã2
Z. In fact, one can obtain X̃ be taking the strict transform of X

inside Ã2
Z, i.e. the closure of ϕ−1(X \ V (I)) inside Ã2

Z. Without providing any
proof or argument, I will explain you how to do this. To do this, the only thing
we need is that X is not contained in V (I), see [Liu02, Cor. 8.1.17, p. 324]

The equation z1x− 3 in B1 comes from the blowing-up of A2
Z in V (I), so that

one we do not change. In B1 the exceptional fibre is defined by x = 0, so
we will try to get rid of some factors x in the first equation. For the original
equation y2 − (x − 1)3 − 1, we already saw that it lies in I2, but not in I3.
Therefore, the first equation w2

1x
2− (x− 1)3− 1 is divisible by x2. This is not

immediately obvious, but we can rewrite it as

w2
1x

2 − x3 + 3x2 − 3x = x2(w2
1 − x+ 3)− z1x2.

Hence, we now consider

C1 = Z[x,w1, z1]/(w
2
1 − x+ 3− z1, z1x− 3)

= Z[x,w1]/((w
2
1 − x+ 3)x− 3)
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and, analogously,

C2 = Z[y, w2, z2]/(1− w3
2y + 3w2

2 − w2z2, z2y − 3)

and
C3 = Z[w3, z3]/(z

3
3 − 3w3

3 + 3w2
3 − w3).

Gluing the Ci in the obvious way, we get X̃. We see that the special fibre
(above 3) of C1 is the intersection of a line and a parabola. In C2 we get the
disjoint union of two copies of Gm, and in C3 we get one copy of A1.

Problem 7. Check how these Ci glue, and prove that X̃ does not have non-
regular points in the fibre above 3.

3 Resolution of singularities

Let X/S be a fibred surface. Let X1 → X be the normalisation of X. For
i = 2, . . ., let Xi be the normalisation of the blow-up of Xi−1 along the non-
regular locus of Xi−1. In this way, we obtain a sequence of fibred surfaces

. . .→ Xn+1 → Xn → . . .→ X1 → X.

Theorem 8 ([Liu02, Cor. 8.3.51, p. 365]). Suppose that the generic fibre Xη

of X is smooth over K. Then this sequence stops, i.e. for some n the fibred Xn

is regular. In particular, X admits a so-called desingularisation in the strong
sense.

The proof of is theorem is beyond the scope of this talk, but I would like
to stress that it is really a non-trivial result. The problem of resolution of
singularities has been solved for reduced algebraic varieties over fields of char-
acteristic 0 by Hironaka. It is, however, still open for varieties of dimension at
least 4 over fields of characteristic p > 0.

4 Minimal regular models

Now we know how to (really) resolve singularities and create regular models
of curves, we will focus on simplifying our regular models. For this, we first
need the following definition.

Definition 9. Let X/S be a regular fibred surface. Then X/S is called mini-
mal if every birational map of regular fibred surfaces Y/S 99K X/S is a mor-
phism.
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Definition 10. A minimal regular fibred surface X/S that is at the same time
a regular model of C, is called a minimal regular model of C.

In order to get a minimal regular model from a regular model, one needs to
contract so-called exceptional divisors.

Definition 11. Let X/S be a regular fibred surface. Then a prime divisor E
is called an exceptional divisor, if there exists a regular fibred surface Y/S and
a morphism f : X → Y over S, such that f(E) is a point and f is the blow-up
of Y along f(E).

The following criterion due to Castelnuovo provides a practical way to deter-
mine the exceptional divisors of a regular fibred surface.

Theorem 12 ([Liu02, Thm. 9.3.8, p. 416]). Let X/S be a regular fibred surface
and let E ⊂ Xs be a vertical prime divisor. Moreover, let k′ = H0(E,OE).
Then E is an exceptional divisor if and only if E ∼= P1

k′ and E2 = −[k′ : k(s)].

The following theorem, due to Lichtenbaum and Shafarevich, states that min-
imal regular models exists for g ≥ 1. One can obtain a minimal regular model
by taking any regular model and contracting exceptional divisors until there
are none left, cf. [Liu02, Prop. 9.3.19, p. 421]. One might wonder why this
only works for curves with positive genus. The main reason for this lies within
the use of intersection theory.

Theorem 13 ([Liu02, Thm. 9.3.31, p. 422]). If g ≥ 1, then there exists a
minimal regular model of C. Moreover, it is uniquely unique.

4.1 P1 does not have a minimal regular model

Suppose that we consider P1
Q and the regular model X = P1

Z. Then X is
a relatively minimal surface in the sense of [Liu02, Def. 9.3.12, p. 418], i.e.
X does not have any exceptional divisors. In particular, if P1

Q has a minimal
regular model X , then X has to be a minimal regular model (as there obviously
exists a birational map, and hence a morphism X → X , and this has to be an
isomorphism as X is relatively minimal, see loc. cit.).

Proposition 14 ([Liu02, Prop. 9.3.13]). If X/S is a minimal regular fibred
surface, then the natural map ρ : AutS(X)→ AutK(Xη) is bijective.

Proof. Due to separatedness, ρ is injective. Due to the defining property of
minimal regular fibred surfaces, any automorphism Xη → Xη extends to a
morphism X → X. The same holds for the inverse, hence we get an automor-
phism and ρ is surjective.

5



The map PGL2(Z)→ PGL2(Q) is not bijective as(
2 0
0 1

)
is not in the image, for example. Hence, X is not a minimal regular model of
the curve P1

Q.

Remark 15. Another way to obtain the same result is the following. Take
a closed point P of X in the special fibre above p, and consider the blow-up
Y → X of X along P . Then the special fibre above p of Y consists of two copies
of P1, and both of them are contractible. If you contract the newly created
copy of P1 in the aforementioned special fibre, you obtain a contraction Y → Z.
Now Z is another relatively minimal model of P1

Q, but it is not isomorphic (as
model of P1

Q!) to X.

For example, if you take the point P = (0 : 1) in the fibre above 2, and you
execute this procedure, then the two models you get are isomorphic to P1

Z as
scheme. However, the birational map that you would get, on the special fibre
P1
Q, when you consider the two schemes as models (and not just as schemes),

would be given by (x : y) 7→ (x : 2y), and this does not extend to a morphism
on P1

Z.

Problem 16. Verify the latter example: i.e. take the scheme P1
Z, blow it up

in P and then contract the old divisor in the special fibre. While doing this,
keep track of the structure as a model of P1

Q.

Remark 17. For elliptic curves, there exists an explicit classification of the
special fibres of the minimal regular model. Tate’s algorithm (see [Liu02, Rem.
10.2.4, p. 489]) takes the coefficients of the equation as input, and will give
an explicit description the special fibre. On the background, there is of course
the whole process of blowing-up the non-regular locus.

5 Néron models

Let X/S be a minimal regular model of C. The following result has first been
proven for elliptic curves, and later for general curves of positive genus by Tong
and Liu.

Theorem 18 ([LT16]). Suppose that g ≥ 1. Then the (non-empty, open)
smooth locus N /S of X/S is a Néron model of C/S.

Corollary 19. For curves of positive genus, Néron models exist.

Remark 20. Again, for reasons very similar as before, P1 does not have a
Néron model.
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Example 21. In the case of Example 3, the model we found after blowing-up
the point (−1 : 0 : 1) in EF3 , is minimal regular outside the prime 2. The special
fibre above 3 of the Néron model consists of two copies of A1, cf. Problem 7.
This corresponds to the fact that E has additive reduction at 3.

Remark 22. Suppose that we work over a discrete valuation ring and we
consider an elliptic curve over K. Then there are a few cases (see also the
classification due to Kodaira and Néron):

• If E has good reduction, then the special fibre of the Néron model is just
the reduction of any/the smooth model.

• If E has split multiplicative reduction, the special fibre of the Néron
model is Gm × Z/nZ for some n.

• If E has non-split multiplicative reduction, then after an unramified1

quadratic extension, giving rise to the extension k′/k of residue fields,
the special fibre of the Néron model becomes Gm,k′ × Z/nZ. There is
only one way the Galois group can act on the component group: the
non-trivial element must act by sending an element to its inverse. The
special fibre of the Néron model (over S) is the union of one or two copies

(if n is odd or even, respectively) of ker

(
Gm,k′

Nk′/k−→ Gm

)
and bn−1

2
c non-

[geometrically irreducible] components without rational point.

• If E had additive reduction, then the component group is a group of order
at most 4, and the identity component is an A1. In case char k > 3, the
exact sequence splits and the k-rational points of the special fibre are
A1(k)× Φ, where Φ is a finite group of order at most 4.

Problem 23. Take your favourite elliptic curve with multiplicative reduction
and find the special fibre of the Néron model.
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