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Isogenies

Definition
An isogeny between two abelian varieties over Q is a morphism

p: A — Bsuch that # ker ¢ < oco.

Isogenies are obtained by taking quotients by finite subgroups defined
over Q. Being isogenous is an equivalence relation.

Theorem (Faltings)
The isogeny class of A over Q is finite.

Two abelian varieties in the same isogeny class share many properties,

including
- dimension - Mordell-Weil rank rkz A(Q)
- L-function - endomorphism algebra End(A) ® Q
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Isogeny classes

Theorem (Faltings)
The isogeny class of A over Q is finite.

Can construct (finite, connected) isogeny graphs:
- vertices: abelian varieties in an isogeny class,

- edges: indecomposable isogenies and labelled by degree.

Questions
- What are the possible isogeny graphs when dim(A) is fixed?

- Can we compute the isogeny graph of a given abelian variety A?
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Elliptic curves over the rationals

We can explore isogeny graphs of elliptic curves over Q at the LMFDB.
- Ignoring degrees, we find 10 non-isomorphic graphs:

Size 1 2 3 4 6 8
Examples 37.a 26.b 1la 27.3,203,17a 14.3,21a 154, 30a

- All edge labels, i.e. degrees of indecomposable isogenies, are prime.
- Not all primes ¢ appear as isogeny degrees: only
¢e{2,...,19,37,43,67,163}.
Lemma
Any isogeny ¢: E — E’ can be factored as

e E P E 22 0 E = ) where deg(yi) = £ are primes and
are defined over Q.
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Elliptic curves over the rationals

Theorem (Mazur)

If p: E— E’' defined over Q has prime degree ¢, then
¢e{2,...,19,37,43,67,163}.

Theorem (Kenku)
Any isogeny class of elliptic curves over @ has size at most 8.

Chiloyan, Lozano-Robledo 2021
Complete classification of possible labelled isogeny graphs.

The LMFDB contains examples for all of these graphs.
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Higher dimensions?

Algorithmic problem
Given an abelian surface A (i.e. g = 2) over Q, compute its isogeny class.

In this work, we add two additional assumptions:

- Alis principally polarized, i.e. equipped with A ~ AY. True for ECs and
Jacobians.

+ Alstypical, i.e. End(Ag) = Z.
Then A is the Jacobian of genus 2 curves over Q:

v2 = f(x), deg(f) =5 or 6 and f has distinct roots.
The LMFDB contains genus 2 curves with small discriminants, grouped by

isogeny class of their Jacobians, but these isogeny classes are currently
not complete.
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Algorithmic approach

Algorithmic problem
Given an abelian variety A over Q, compute its isogeny class.

For an elliptic curve E/Q:

1. Search for £-isogenies E — E’ for each £ in Mazur’s list. This is a finite
problem.

2. Reapply on E’ as needed.

In general:

1. Classify the possible isogeny types. (E.g., “prime degree” for elliptic
curves.)

2. Compute a finite number of possible degrees. We now face a finite
problem.

3. Search for all isogenies of a given type and degree.

4. Reapply as needed.
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Isogenies and their kernels

¢ : A — Bisogeny between principally polarized abelian varieties.
A—25B
ZPA Zl*f* ~ p=A"0op" 0Xgop e End(A).

AY +—— B
@

Recall that End(A) has a positive Rosati involution 1 defined by
uh = )\A4 ou” o

Theorem (Mumford)
There is a bijection {
(1: K)

{np:A%B}<—> _ p€EEndA), p>0 }

© K C A[p] maximal isotropic

©—> (/\A_Wocpvo/\goga, kercp).

Here “isotropic” means: isotropic w.rt. the Weil pairing on A[u].

9/28



Irreducible isogeny types

Assume now that End(A)" = Z. (True in particular if A is typical).

Any ¢ : A — B satisfies: ker(y) is maximal isotropic in A[n] for some
n e Zx.

Up to decomposing ¢, can assume n = £ is a prime power.

Lemma

Assume e > 3. If K C A[¢?] is maximal isotropic, then £K N A[£¢?] is
maximal isotropic in A[¢~2].

Thus, any isogeny ¢ : A — B can always be factored as
A=Ay 2 A B0, By B A =B,

where ker(i;) is maximal isotropic in Ai_;[£;] or Ai_1[¢?], for £; prime.
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Classification of isogenies

Let A be typical, principally polarized abelian surface.

Proposition
The isogeny class of A can be enumerated using isogenies ¢ of the
following types:

1. 1-step: K := ker(¢p) is @ maximal isotropic subgroup of A[¢], so
K ~ (Z/4Z)?,

2. 2-step: K is a maximal isotropic subgroup of A[¢*] and
K ~ (Z/4Z)* x 7./0*Z.

These isogenies are of degree ¢? and ¢* respectively.

Over Q*, every 2-step isogeny decomposes as a sequence of two 1-step
isogenies, in £ + 1 different ways (permuted by Galois).
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Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny

class.

Elliptic curves /Q

Typical p.p. abelian surf. /Q

Isogeny types

Prime degree

1-step or 2-step v/

Possible degrees

Mazur's theorem

?

Search for isogenies
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Serre’s open image theorem

Theorem (Mazur)
If o : E— E’ defined over Q has prime degree ¢, then
te{2,...,19,37,43,67,163}.

No uniform result a la Mazur is known for abelian surfaces. However:

Serre’s open image theorem

If Ais a typical abelian surface, then its Galois representation has open
image in GSpA(Z). Thus, A[¢] has nontrivial rational subgroups only for
finitely many £'s.

Includes all primes for which 1-step and 2-step isogenies exist. Results of
Lombardo, Zywina give bounds on such £'s (depending on A), but are
impractical.
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Dieulefait’s algorithm

Instead we use:

Algorithm (Dieulefait)’

Input: Conductor of A and a finite list of L-polynomials

Output: Finite superset of primes £ with reducible mod-¢ Galois
representation.

Example where the only possibilities are isogenies of degree 31%:

C: VP + (x4 1y = x° 4+ 23x* — 48x° + 85x° — 69X + 45.

See also Banwait-Brumer-Kim-Klagsbrun-Mayle-Srinivasan-Vogt (2023).

14/28



Dieulefait’s algorithm explained: 1-dimensional case

For any prime p, the characteristic polynomial Q, € Z[x] of the action of
Frob, on the Tate module T;(A) does not depend on the choice of ¢, and
we can use it to find primes for which A[¢] has a 1-dimensional subspace.

Lemma

Suppose that A[¢] has a 1-dimensional Galois invariant subspace. Let N
be the conductor of A, let p # £ be a prime number, let d be the largest
integer such that d* | N, and let f(p) be the order of p € (Z/dZ)*.

Then £ is a divisor of the integer M, := Resultant(Qp(x), x'?) — 1).

The proof of this lemma uses character theory. The idea of Dieleufait's
algorithm is to compute a few integers pM, and compute their common
prime factors. This contains all primes for which A[¢] has a 1-dimensional
subspace.
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Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny

class.

Elliptic curves /Q

Typical p.p. abelian surf. /Q

Isogeny types

Prime degree

1-step or 2-step v/

Possible degrees

Mazur's theorem

Dieulefait's algorithm v

Search for isogenies

modular polynomials

”
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Modular polynomials

Elliptic curves: usually search for £-isogenies using algebraic equations
for the cover of modular curves Xo(€) — X(1).

E.g, the modular polynomials ®.(x,y) € Z[x,y] defined by
®,(j,j') = 0 <= F¢ : E; — E; such that kerp ~ Z /(7.

Size grows as O(£*), big but manageable (28MB for ¢ = 163).

Abelian surfaces: Modular polynomials for p.p. abelian surfaces are
impractical.

More variables: ®,(x1, X2, X3,Y) € Q(X1, X2, X3)[V]-

Size grows as O(£") (Kieffer, 2022), already > 29 GB for £ = 7.

We use complex-analytic methods instead.
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Moduli space of elliptic curves

Let E/C be an elliptic curve. Moduli space: SL,(Z)\H.

Can choose 7 € Hy and an equation E : y* = x® — 27¢4x — 54¢s such that

E(C) ~ C/(Z+7Z),
dx .

Z — 5 dz.

Then ¢4, ¢s are modular forms:

_ B Doy E4(T)
€. = Es(7), C6 =Ee(r), hence j(E)=j(7)= 17287&(7_)3 —Ee(r)
Theorem

The graded C-algebra of modular forms on Hj for SL;(Z) is C[Es, Es].

Moreover E,, Es have integral, primitive Fourier expansions.
Hence cs, Ce are indeed “the right invariants” to consider.
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Moduli space of p.p. abelian surfaces

A complex p.p. abelian surface takes the form C?/(Z* 4 7Z?) with 7 € Hy:
this means 7 is a 2 x 2 complex, symmetric matrix such that Im(r) is
positive definite.

H, carries an action of GSp,(R)*, analogous to the “usual” action of
GLS (R) on Hy. A moduli space of abelian surfaces is Sp,(Z)\H,.

Theorem (lgusa)
The graded C-algebra of (scalar-valued) Siegel modular forms of even
weight on H, for Sp,(Z) is C[M4, Ms, M1o, M12], where the M; are
algebraically independent.
Normalized such that the M; have primitive, integral Fourier expansions
and Mg, My, are cusp forms.
Explicit relations with the Igusa-Clebsch invariants I, I4, ls, 1o Of @ genus 2
curve:

My = 2714, Me = 27>(loly — 3l5),

/\/]10 = —2_12110, MWZ = 2_15/ZIWO~
The M;'s are “the right invariants” on the moduli space of p.p. abelian

surfaces.
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Analytic isogenies

Enumerating isogenous abelian varieties is easy on the complex-analytic
side.

- Elliptic curves: the complex tori ¢-isogenous to C/(Z + 7Z) are given

by
C/(Z+ 3n7Z)

where 1 € SLy(Z) are coset representatives for I'°(£)\SLy(Z).
Note: 3n7 = ~y7 where v = ( 9)n € GL:(Q)*.

- Abelian surfaces: explicit sets S1(£), S>(¢) € GSp,(Q)* such that for
i=1,2

{AV i-step ¢-isogenous to C*/(Z* + 77132)} = {CQ/ (Zz + VTZZ) }weS,(Z) :

Algorithmic problem
Decide when 7 € Hj is attached to an abelian surface defined over Q.
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Sketch of algorithm

Task
Decide which ~7, for v € $;(¢) or S;(£), are period matrices of Jac(C) for
some genus 2 curve C/Q.

We use the following algorithm to solve this problem.

1. Evaluate Siegel modular forms at 7. This yields C-valued invariants
of the curve C. (Think: the j-invariant of elliptic curves is also an
analytic function.)

Call these invariants N(j,~) forj € {4,6,10,12}.

2. If Cis defined over Q, then N(j,~) is a rational number, and even an
integer if properly constructed. We can certify this with interval
arithmetic.

3. Given these invariants in Z, reconstruct an equation for C by
“standard methods” (Mestre’s algorithm, computing the correct twist.)
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Construction of algebraic integers

Theorem (corollary of Igusa)

If f is a Siegel modular form of even weight k with integral Fourier
coefficients, then 12°f € Z[Ms, Mg, M1g, My;].

Theorem

Let 7 € H; such that there exists A € C* with XM;(r) € Z for

j € {4,6,10,12}.

If f is a Siegel modular form of even weight k with integral Fourier
coefficients, then

[T (x-(22)'5(ym) e Zix.

’yES,(é)
Thus, for each j € {4,6,10,12}, the complex numbers
NG,v) = (MY Mi(yr)  fory € Si(e), i=1o0r2,

form a Galois-stable set of algebraic integers.
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Algorithm and certification

Input: Invariants ms, me, Mo, M; € Z of a genus 2 curve, a prime ¢, and
e {1,2}.

Output: Invariants of all i-step £-isogenous abelian surfaces.

1. Compute complex balls that provably contain:
-7 eHy
- X € C* such that ¥M;() = mj for j € {4,6,10,12}
- N(J,), for each j € {4,6,10,12} and v € S;(¥).
2. Keep the ~q's such that N(j, v0) contains an integer mj for
J € {4,6,10,12}.
The mj are putative invariants for the abelian surface attached to yo7.
3. Confirm that N(j, ) = m; by certifying the vanishing of

II NGy —m) ez

YES;(£)

We need to recompute N(j,vo) (only!) to a much higher precision.
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Example, continued

Let ¢ =31,i=1and
C:y? 4+ (x+ 1)y = x> 4 23x" — 48x° + 85x> — 69X + 45.

Working at 300 bits of precision, there is only one o € S1(¢) such that the
invariants N(j,vo) for j € {4,6,10,12} could possibly be integers:

N(4,70) = o - 318972640 4+ ¢ with || < 7.8 x 107,

N(6,70) = o’ - 1225361851336 + ¢ with |¢| < 5.5 x 107,
N(10,70) = o - 10241530643525839 + &  with || < 1.6 x 1072,
N(12,70) = —a® - 307105165233242232724 + & with |e] < 4.6 x 1077

where a = 22.32.31.

We certify equality by working at 4128 800 bits of precision using certified
quasi-linear time algorithms for the evaluation of modular forms
(Kieffer 2022).
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Example, finding the curve

Given

(M4, mi, mho, mh,) = (318972640, 1225361851336, 10241530643525839, . . .),
find a corresponding curve C’ such that Jac(C) and Jac(C’) are isogenous
over Q.

Mestre’s algorithm yields

y? = —1624248x°+5412412x° —6032781x" +876836x° —1229044x° —5289572x— 1087304
a quadratic twist by —83761 of the desired curve

C' P 4xy = —X°+2573X"+92187x 421616542855 +406259311249x+93951289752862

We reapply the algorithm to C’, and we only find the original curve.

Remarks
- 113 minutes of CPU time for this example

- 90% of the time is spent certifying the results
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LMFDB data

Originally 63107 typical genus 2 curves in 62600 isogeny classes.
By computing isogeny classes, we found 21923 new curves.

Size ‘ 1 2 3 4 5 6 7 8 9 10 12 16 18
Count‘51549 2672 6936 420 756 164 40 45 3 2 3 9 1

Observation
A 2-step 2-isogeny (of degree 16) always implies an existence of a second
one.
This explains the 6913 A and the 756 1 we found.
The whole computation took 75 hours. Only 3 classes took more than 10
minutes:

- 349.a: 56 min, isogeny of degree 13",

- 353.a: 23 min, isogeny of degree 11*.

- 976.a: 19 min, checking that no isogeny of degree 29* exists.
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Upcoming to LMFDB

A new set of 1743737 typical genus 2 curves due to Sutherland is soon to
be added to the LMFDB, split in 1440 894 isogeny classes. We found
600948 new curves (in 111 CPU days). Counts per size:
1 2 3 4 5 6 7 8 >9
1032456 116847 197253 54543 15547 14323 430 5594 3901

We discovered indecomposable isogenies of degree
2° (= Richelot isogenies), 2%,3? 3% 5% 5%, 7%, 7%, 11,13%,13%,17°, 31°.
- Size 2: 75% have degree 2%, 22% have degree 3% and then 3?, 5, 5%, 7%,
7.
- Size 3: 99% are A of degree 2* isogenies.
- Size 4: 98% are >— of Richelot isogenies.
- Size 5: 99.8% are < of degree 2* isogenies.

- Size 6: 75% + 15% are two graphs consisting of Richelot isogenies.
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Life, the universe, and everything

Isogeny graph consisting of 42 Richelot isogenous curves (outside our
database):

Preprint: https://arxiv.org/abs/2301.10118

Code and data:
https://github.com/edgarcosta/genus2isogenies
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