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1 Fibre products and representability

Recall from last week ([G]) the definition of categories fibred in groupoids over
a category S. Besides objects there are 1-morphisms (functors) between objects
and 2-morphisms (natural transformations (that are isomorphisms automatically))
between the 1-morphisms. They form a so-called 2-category, CFG. We also defined
the fibre product in CFG. In this chapter we will take a general base category S
unless otherwise indicated. However, if wanted, you can think of S as being Sch.

Given an object S ∈ Ob(S), we can consider it as category fibred in groupoids,
which is also called S/S, by taking arrows T → S in S as objects and arrows over
S in S as morphisms. The functor S/S → S is the forgetful functor, forgetting the
map to S.

Exercise 1. Let S, T ∈ Ob(S). Check that the fibre (S/S)(T ) is isomorphic to the
set Hom(T, S), i.e. the category whose objects are the elements of Hom(T, S) and
whose arrows are the identities.

Proposition 2. Let X be a category fibred in groupoids over S. Then X is equivalent
to an object of S (i.e. there is an equivalence of categories that commutes with the
projection to S) if and only if X has a final object.

Proof. Given an object S ∈ Ob(S) the associated category fibred in groupoids has
final object id : S → S.
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On the other hand, if X has a final object lying over S ∈ Ob(S), then it is an easy
exercise, using the properties of categories fibred in groupoids, to prove that it is
equivalent to S/S.

Now let us repeat the definition of the fibred product.

Definition 3 ([G]). Let C,D, E be categories fibred in groupoids over S, and let
α : C → D and β : E → D be 1-morphisms in CFG. Then the fibred product C ×D E
is defined as follows:

• its objects over T ∈ S are triples (c, e, ϕ), where c ∈ Ob(C(T )), e ∈ Ob(E(T ))
and ϕ : α(c)→ β(e) is an isomorphism in D(T );

• its morphisms (c, e, ϕ) → (c′, e′, ϕ′) are pairs of morphisms f : c → c′ and
g : e→ e′ over the same S → S ′ such that the diagram

α(c)
ϕ //

α(f)

��

β(e)

β(g)

��
α(c′)

ϕ′
// β(e′)

commutes.

Example 4. Take S = Sch. Let S ∈ Ob(Sch) and T, V ∈ Ob(Sch/S). Then
S, T and V can be considered as objects of CFG by taking (Sch/S), (Sch/T ) and
(Sch/V ), respectively. Then the product T ×S V in Sch is canonically isomorphic
to the product T ×S V in CFG.

Remark 5. First consider the bottom part of this diagram.

T
(c,e)

##G
G

G
G

G e

��

c

''

C ×D E
pE //

pC
��

E
β

��
C α // D

Remark that it is not a commutative diagram in the classical sense. The 1-morphisms
β ◦ pE and α ◦ pC are not equal, but there is a 2-morphism between them, which
should be considered as part of the data of the diagram.

Now the fibred product has the following universal property. For diagrams as above,
i.e. for every T ∈ Ob(CFG), 1-morphisms e : T → E and c : T → C, and 2-morphism
α ◦ c ⇒ β ◦ e, there exists a unique 1-morphism (c, e) : T → C ×D E such that
pC ◦ (c, e) = c and pE ◦ (c, e) = e, and the 2-morphism α ◦ c ⇒ β ◦ e is induced by
the 2-morphism α ◦ pC ⇒ β ◦ pE .
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Exercise 6. Let S = Sch and n ∈ N0. Consider the diagonal ∆: Mg →Mg ×Mg

(which means Mg ×S Mg). For S ∈ Ob(Sch) a 1-morphism S → Mg × Mg

corresponds to an ordered pair (C,C ′) of genus g curves over S. Prove that the
following diagram is cartesian in the 2-categorical sense:

IsomS(C,C ′) s //

C
��

S

(C,C′)
��

Mg
∆ //Mg ×Mg

where the 2-morphism ∆ ◦ C ⇒ (C,C ′) ◦ s, i.e. the functorial isomorphism of pairs
(C,C) ' (C,C ′), is given by (ϕ 7→ T ) 7→ ηϕ := (idCT

, ϕ).

Exercise 7. Let f : Mg,1 → Mg be the forgetful 1-morphism, let S ∈ Ob(Sch)
and let S →Mg be a 1-morphism corresponding to a curve C/S. Prove that there
is a natural cartesian diagram (in the 2-categorical sense) as below. Describe all
1-morphisms and 2-morphisms which are not indicated.

C //

��

Mg,1

f

��
S

C //Mg

This morphism f is also called the universal curve over Mg as any genus g curve
fits in such a diagram.

Exercise 8. The following funny fact might be a nice exercise for the categorical
reader: prove that it suffices to check the universal property only for test objects T
which are objects of S.

Definition 9 ([G]). Let f : C → D be a 1-morphism in CFG. We say that f is
representable (by objects of S) if for every T ∈ Ob(S) and every 1-morphism T → D
in CFG, the fibre product C ×D T is equivalent to an object of S.

Definition 10 ([G]). Let f : C → D be a representable 1-morphism in CFG over
S = Sch. Let P be a property of morphisms of schemes that is stable under base
change and fppf-local on the target. Then we say that f has property P if for all
T ∈ Ob(S) and all 1-morphisms T → D the base case change C ×D T → T has
property P .

Remark 11. One could argue that it is not necessary to assume the fppf-locality
at this point. This is true, but we will use this mainly for stacks over Sch with the
fppf-topology and then we want the notion to be compatible with the descent.

Example 12. If S → T is a morphism in Sch having a property P as above, then
the associated 1-morphism of CFG over S = Sch is representable and has property
P .

Example 13. Let g ≥ 2. From exercise 7 we can conclude that the forgetful 1-
morphism Mg,1 →Mg is smooth of relative dimension 1, proper and surjective.
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Proposition 14 ([V]). Let X be a CFG and let ∆: X → X ×S X be the diagonal
morphism. Then ∆ is representable if and only if for every T ∈ Ob(S) every 1-
morphism T → X is representable.

Proof. Suppose that ∆ is representable. Then we want to show that any 1-morphism
f : T → X is representable. To do this, take an arbitrary 1-morphism g : S → X
and consider S ×X T . Using the universal property we can verify that the following
diagram is cartesian.

S ×X T //

��

S ×S T
g×f

��
X ∆ // X ×S X

Then the representability of ∆ implies that S ×X T is represented by a scheme.

Now suppose that every 1-morphism T → X is representable. Now suppose that
S ∈ Ob(S) and that (f, g) : S → X ×S X is a 1-morphism. Then we have the
following diagram.

X ×X×SX S //

��

S ×f,X ,g S //

��

X
∆

��
S

∆S // S ×S S
f×g // X ×S X

The right and the big square are cartesian, hence the left square is cartesian. Now
X ×X×SX S is a scheme as S, S×S S, and S×f,X ,g S are schemes by assumption.

Example 15. Let n ∈ {4, 5}. Take S = Sch/ Spec (Z[ 1
n
]). Consider the functor C

which associates to a scheme S the set of pairs of an elliptic curve over S and a
section everywhere of order n. This is a category fibred in groupoids. Consider the
forgetful 1-morphism f : C →M1,1. This morphism is representable, étale, finite of
degree 12 resp. 24, as for elliptic curves E/S the morphism (E[n] \ E[2]) → S has
these properties if charS - n.
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2 Algebraic stacks

In this chapter we will take S = Sch and g ≥ 2. We will introduce the notion of an
algebraic stack over S, with the fppf-topology, and prove that Mg,n is an algebraic
stack.

Proposition 16. The diagonal map ∆: Mg,n → Mg,n ×Mg,n is representable by
schemes, proper and unramified.

Proof. By proposition 14 we need to check that every 1-morphism f from a scheme T
toMg,n is representable. Let C/T be the curve corresponding to f . Let S ∈ Ob(Sch)
an abitrary scheme and let g : S →Mg,n be a 1-morphism corresponding to a curve
C ′/S. Then we need to check that S×Mg,n T is equivalent to a scheme. By exercise
6, the latter is IsomT×S(CT×S, C

′
T×S). As the genus is at least 2, there are canonical

polarisations on C and C ′. Then a result of Grothendieck implies that this Isom-
sheaf is represented by a scheme, see for example [DM, p. 84] or [N, p. 31].

To check that ∆ is unramified, you need to check that IsomT×S(CT×S, C
′
T×S) is

unramified. To do this we can reduce to the case of an algebraically closed field k
and check that Autk(C) is unramified. Then k[ε]/(ε2)-points correspond to vector
fields on C and there are no non-zero vector fields over smooth genus g curves. In
other words, Autk[ε]/(ε2)(Ck[ε/(ε

2))→ Autk(C) is a bijection. Note that we use that
g ≥ 2.

To prove that ∆ is proper, we use the valuative criterium for properness, which
amounts to the following geometric theorem. More details can be found in [DM, p.
84].

Theorem 17 ([DM, Lemma I.12]). Let X and Y be smooth curves of genus g over
a discrete valuation ring R with algebraically closed residue field. Then any isomor-
phisms between the generic fibres Xη and Yη extends uniquely to an isomorphism
between X and Y .

Remark 18. In fact, now we have also proved the finiteness of the diagonal. In
particular, this implies that Autk(C) is finite for any genus g curve C over an alge-
braically closed field k.

Exercise 19. Prove that theorem 17 is not true for g = 0.

Theorem 20. There exists a scheme H and a 1-morphism H → Mg,n that is
surjective and smooth.

Proof. Details for this proof can be found in [DM, p. 78]. As we saw in [G], there
is a canonical embedding for any genus g curve f : C → S in P(f∗(Ω

1
C/S
⊗3)). Now

f∗(Ω
1
C/S
⊗3) is free of rank 5g − 6. We will consider the functor

H : S 7→ {(f, ϕ) : f : C → S of genus g and ϕ : P(f∗(Ω
⊗3
C/S))

∼→ P5g−6
S }.
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On the one hand, H is represented by an open subscheme of the Hilbert scheme of
P5g−6, which represents the set of closed subschemes of P5g−6 that are flat and of
finite presentation over the base. On the other hand, there is an action of PGL5g−5

on H by postcomposing ϕ with an automorphism of P5g−6. Now π : H → Mg,n is
smooth and surjective, as for each curve f : C → S corresponding to S →Mg,n the
fibre product with π is represented by the scheme of isomorphisms between P5g−6

S

and P(f∗(Ω
⊗3
C/S)), which is smooth and surjective over S.

Remark 21. To get a coarse moduli space Mg,n, you take the geometric invariant
theory quotient (also known as the categorical quotient in Sch, which is given on
affines by taking the ring of invariants) of H by PGL5g−5. This coarse moduli has the
defining property that every morphism from Mg,n to a scheme S factors uniquely
through Mg,n.

Theorem 22 ([DM, Theorem 4.21]). Let X be a stack over Sch. Assume that the
diagonal ∆: X → X ×X is representable, unramified and proper. Moreover, assume
that there exists a scheme H of finite type over Z and a smooth surjective morphism
H → X . Then there exists a scheme S and an étale surjective morphism S → X .1

Now we managed to prove thatMg,n is an algebraic stack even before knowing what
this means.

Definition 23. Let X be a stack over Schfppf . Then X is called a Deligne-Mumford
stack if the diagonal of X is representable and there exists a scheme S together with
a surjective and étale morphism S → X .

Remark 24. The first condition that the diagonal is representable is necessary for
the second condition to even make sense, as it implies that S → X is representable.

Remark 25. There is also the weaker notion of an Artin stack or algebraic stack in
the literature. Here you only require the diagonal to be represented by an algebraic
space2 and the morphism S → X to be only smooth and surjective. Note that in
the past people have also used called Deligne-Mumford stacks algebraic stacks.

Example 26. AlsoM1,n for n ≥ 1 and M0,n for n ≥ 3 are Deligne-Mumford stacks,
and M0,n for n ∈ {0, 1, 2} is an Artin stack. You can use a similar strategy using
other sheafs to get canonical embeddings, see also [G].

For M1,1 we can also give a direct proof. The proof of the representability of the
diagonal is similar to the proof given in proposition 16, but the canonical polarisation
is given by the marked point, instead of by Ω⊗3. The cover by a scheme is given by
the two 1-morphisms in example 15: the forgetful 1-morphism from elliptic curves
over Z[1

2
] with a point of order 4, covering (M1,1)Z[1/2], and the forgetful 1-morphism

from elliptic curves over Z[1
5
] with a point of order 5, covering (M1,1)Z[1/5]. The fact

that these two stacks are equivalent to a scheme can be found in [CE].

1Here you really start needing the fppf-topology.
2An algebraic space is a sheaf over the fppf-site such that the diagonal is representable by

schemes and there exists an étale surjective cover from a scheme. However, this difference is
irrelevant. In fact, the ‘correct’ definition of a Deligne-Mumford stack should use algebraic spaces.
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3 Quotient stack

In this section we will define the quotient of a scheme by a group as stack. In the
setup we have a scheme X over a scheme S and an affine smooth3 group scheme G
of finite type over S, operating on X.

Definition 27 ([DM, Ex. 4.8]). The quotient stack [X/G] over Sch is defined as
follows. For a scheme T ∈ Ob(Sch) the objects of [X/G] are G-torsors E over T (i.e.
schemes E over T with a right action of GT such that on some fppf-cover V → T we
have E ×T V ∼= GV as scheme with an action of GV ) together with a G-equivariant
map ϕ : E → X. An arrow from E → T to E ′ → T ′ is the data of a cartesian
diagram

E
ψ //

��

E ′

��
T // T ′

such that ψ is G-equivariant and ϕ = ϕ′ ◦ ψ.

Remark 28. An example of an object over X in [X/G] is G × X, where G acts
on the left and ϕ : X × G → X is the projection on the first coordinate. This
object gives rise to a morphism X → [X/G] of stacks that is smooth and surjective.
You can use this to prove that [X/G] is an Artin stack. Moreover, the morphism
X → [X/G] is the universal G-torsor over X, i.e. every G-torsor Y → T with a
G-equivariant map Y → X arises as a base change of X → [X/G].

Example 29. In the previous section we saw how Mg,n can be realised as the
quotient stack [H/PGL5g−5].

Exercise 30 ([LOOV, p. 45–47]). Let Gm act on X :=
⋃

0≤i≤nD(xi) ⊂ An+1 by
multiplication. Prove that [X/G] = Pn.

Example 31. If you take X = S, you get the stack classifying torsors for a group
scheme. This stack is also called the classifying stack of G, also denoted by BG.

Exercise 32. Prove that M0,0
∼= BPGL2.

3In fact you could take G to be étale and separated instead of affine smooth and then the
resulting quotient stack is a Deligne-Mumford stack.
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