
Lecture notes on coding theory

Raymond van Bommel

Curves over finite fields, Autumn 2017, Leiden

1 Introduction

When one agent tries to transfer information to another agent through a noisy
channel, errors can occur. Error detection and correction is used to resolve this
problem. These methods will be illustrated in the following simple examples.

Example 1 (parity bit). Alice wants to send three bits (i.e., either 0 or 1
inside the finite field F2) to Bob. To these three bits, she adds one extra bit,
such that the four bits add up to 0. For example, is she wants to send the
message 100, then she actually sends 1001, where the extra bit 1 at the end
is called the parity bit.

Now, suppose the second bit got flipped during the communication process
and Bob receives the message 1101. Then he can recognise that something
went wrong during the communication. Even if we tell Bob that only one
bit has been flipped, he does not have enough data to actually know which
one has been flipped. The best he could do is ask Alice to send her message
again.

If two bits were flipped in the communication, Bob would actually not notice
that something is off. We say, using this code, Bob can detect up to 1 bit
error.

Exercise 2. In the situation of the previous example, suppose that, for each
bit independently, there is a probability of 10% that this bit has been flipped
during the transmission.

(a) Calculate the probability that Bob receives the message correctly.

(b) Calculate the probability that Bob receives an invalid message (i.e. a
message for which the four bits do not add up to 0).

(c) Calculate the probability that Bob receives another message that is also
valid (i.e. a message for which the four bits add up to 0, but which is not

1

Alice’s message).

*(d) If Bob is receiving an invalid message, he will ask Alice to resend her
message until Bob does receive a valid message. Calculate the probability
that Bob receives Alice’s message correctly.

Example 3 (repetition code). This time Alice wants to send one bit to Bob.
Alice will send the bit to Bob thrice. So she either sends the message 000 or
111 to Bob.

Now, suppose she wanted to send 000 and the second bit got flipped during
the communication process. Then Bob receives the message 010. Now Bob
could still guess that Alice’s intended message was 000, assuming that it is
very unlikely that two errors occured during the transmission.

Using this code, Bob could either detect up to 2 bit errors (if he does not care
about correcting the error), or he could correct up to 1 bit error.

Exercise 4. In the situation of the previous example, suppose that, for each
bit independently, there is a probability of 10% that this bit has been flipped
during the transmission.

(a) Calculate the probability that, after correction, Bob receives the message
correctly.

*(b) Suppose that Bob does not try to correct the error himself, but actually
asks Alice to resend her message in case he does not receive either 000 or
111. Calculate the probability that Bob receives Alice’s message correctly
(possibly after multiple iterations).

Error detection and correction is used in many places in daily life. For example,
7-bit long ASCII characters are often appended with one parity bit. More
complicated error correcting codes are used for communication on the internet,
or on compact discs1. Another example is the so-called ISBN, which is used
to uniquely identify books.

Example 5 (ISBN-10). An old ISBN consists of 9 digits x1, . . . , x9 and a
single check digit. The check digit is determined by calculating

x1 + 2x2 + . . .+ 9x9 mod 11.

If this is between 0 and 9, this is the check digit, if this is 10, then the check
digit is the letter ‘X’. An example of a valid ISBN is 0345391802. We can

1A compact disc is an archaic optical data storage system designed in the 1980’s. One
disc was able to contain up to 74 or 80 minutes of music, depending on who you ask.

2

check that this ISBN is valid by calculating

0 + 2 · 3 + 3 · 4 + . . .+ 9 · 0 + 10 · 2 ≡ 0 mod 11.

The system protects its users against the most two common errors made while
copying these numbers:

- if you change any one digit in a valid ISBN, the resulting number will
not be a valid ISBN;

- if you swap any two digits in a valid ISBN, the resulting number will
not be a valid ISBN.

Exercise 6. Prove the latter two claims made in the previous example.

A more sophisticated example of an error correcting code is the so-called Ham-
ming code.

Example 7 (Hamming code). Alice wants to send Bob four bits d1, d2, d3
and d4. She puts these bits in a circle diagram as below. Now she chooses the
parity bits p1, p2 and p3 in such a way that the sum of the bits inside each
circle is 0.

For example, if Alice wants to send the message 1010, then p1, p2 and p3 must
be 0, 0 and 1, respectively. So Alice sends the message 1010001 to Bob.

Now suppose that the third bit get flipped, and that Bob receives the message
1000001. Bob can then put the 7 numbers in the diagram and check that the
sum in the three coloured circles. The blue and red circle will yield sum 1,
while the green circle will yield sum 0. So now Bob knows that he has to flip
the bit that is in both the blue and red, but not in the green circle, which is
indeed the third bit.

This code allows Bob to correct any one error that occured in the transmission.
So in order to correct up to 1 error in 4 bits, Bob has to send 3 bits extra.

3

This is much better than the repetition code in which Bob would have to send
8 bits extra (but could correct some more errors).

The outline of the rest of these lecture notes is as follows. First we will treat the
basic theory behind codes. Then we will see some classical examples, before
continuing with the examples using curves over finite fields. Finally, we will
do actual calculations with these codes, using Magma.

2 Basic definitions and terminology

For our all our codes we will be working over an alphabet. The alphabet is
assumed to be a finite field, whose order is called q. We will be working
mostly with Fnq , the vector space of words of length n.

Definition 8. Let a = (a1, . . . , an) ∈ Fnq and b = (b1, . . . , bn) ∈ Fnq be two
words of lenght n. Then the Hamming distance between a and b is defined as

D(a, b) = |{i ∈ {1, . . . , n} : ai 6= bi}|,

the number of positions in which a and b differ.

Exercise 9. Show that the Hamming distance defines a metric on Fnq .

In this course, we will only consider linear codes as defined below. There
exists a more general notion of code, but we will not consider it for this course.
Remark that the ISBN, as in Example 5 is technically not an example of this.

Definition 10. An [n, k, d]-code C is a linear subspace C ⊂ Fnq , such that
dimFq(C) = k ≥ 1 and

d = min
x,y∈C
x6=y

D(x, y).

The elements of C are called codewords. The parameters n, k and d are also
called the length, the dimension and the minimum distance of C, respectively.
Sometimes n, k and d are implicit and C is just called a code.

Exercise 11. Let C be an [n, k, d]-code. Prove that

d = min
x∈C\{0}

D(0, x).

This might be useful in order to determine the minimum distance of a code in
practice. You can try this yourself for the following examples.

4

Example 12. The parity bit code described in Example 1, given by

C = {(x1, x2, x3, x4) ∈ F4
2 : x1 + x2 + x3 + x4 = 0} ⊂ F4

2,

is a [4, 3, 2]-code.

Example 13. The repetition code described in Example 3, given by

C = {(0, 0, 0), (1, 1, 1)} ⊂ F3
2,

is a [3, 1, 3]-code.

Example 14. The Hamming code described in Example 7 is a [7, 4, 3]-code.

3 Construction of codes

There are several ways to construct codes from existing ones.

Definition 15. Let C1 be an [n1, k1, d1]-code and let C2 be an [n2, k2, d2]-code,
then the direct sum of C1 and C2 is the [n1 + n2, k1 + k2,min (d1, d2)]-code
C1 ⊕ C2 ⊂ Fn1+n2

q .

Definition 16. Let C be an [n, k, d]-code and let

〈·, ·〉 : Fnq × Fnq → Fq : ((x1, . . . , xn), (y1, . . . , yn)) 7→ x1y1 + x2y2 + . . .+ xnyn.

Then the dual code of C is the code

C∨ = {x ∈ Fnq : ∀y ∈ C : 〈x, y〉 = 0}.

Exercise 17. Describe the dual of the repetition code (see Ex. 3) and the
parity bit code (see Ex. 1).

Exercise 18. Determine the length, dimension and minimum distance of the
dual of the Hamming code (see Ex. 7).

5

Definition 19. Let V and W be vector spaces over a field K. Let {vi}i∈I and
{wj}j∈J be bases of W . Then the tensor product of V and W is a vector space
over K whose basis elements are formal symbols vi⊗wj (for all (i, j) ∈ I×J).

Example 20. If V = Kn and W = Km, then V ⊗W will be a vector space
isomorphic to Kmn.

Remark 21. In Definition 19, it looks like the tensor product might depend
on the choice of bases for V and W , but it does not. A more canonical
construction (but probably a bit harder to grasp when you see it for the first
time), would be to take the free vector space generated by the symbols v⊗w
for all (v, w) ∈ V ×W , and then quotient out the relations

(v1 + v2)⊗ w1 = v1 ⊗ w1 + v2 ⊗ w1

v1 ⊗ (w1 + w2) = v1 ⊗ w1 + v1 ⊗ w2

c(v1 ⊗ w1) = (cv1)⊗ w1

c(v1 ⊗ w1) = v1 ⊗ (cw1)

for all v1, v2 ∈ V , w1, w2 ∈ W and c ∈ K.

Definition 22. If v =
∑

i∈I civi and w =
∑

j∈J djwj are vectors in V and
W (and all but finitely many ci and dj are zero), then v ⊗ w is the vector∑

(i,j)∈I×J cidj · vi ⊗ wj inside V ⊗W . This is consistent with the notation
used in Remark 21.

Exercise 23.

(a) Construct an isomorphism between V ⊗W and the space constructed in
Remark 21.

(b) Prove that the map ϕ : V ×W → V ⊗W : (v, w) 7→ v ⊗ w is bilinear.

(c*) Prove that V ⊗ W and ϕ satisfy the following universal property: for
any K-vector space T and any bilinear map ρ : V ×W → T there exists
a unique linear map η : V ⊗W → T , such that the following diagram
commutes:

V ×W ϕ //

ρ

66V ⊗W η // T

Definition 24. If C1 ⊂ Fnq and C2 ⊂ Fmq are codes, then their tensor product
is C1 ⊗ C2 ⊂ Fnq ⊗ Fmq ∼= Fmnq , using Definition 22 to define C1 ⊗ C2 as a
subspace of Fnq ⊗ Fmq .

6

Exercise 25. Describe the tensor product of the parity bit code (see Ex. 1)
with the Hamming code (see Ex. 7), i.e. give a basis for the code words and
give its length, dimension and minimum distance.

4 Bounds on codes

Using an [n, k, d]-code, we need n bits to send a message that originally con-
sisted of k bits. We can detect up to d − 1 (or correct up to bd−1

2
c) bit erros

that might have occured during the transmission. The question is now: how
large can d become, while keeping the difference n − k as small as possible?
The following theorem provides an upper bound.

Theorem 26 (Singleton bound). For any [n, k, d]-code C we have

d ≤ n− k + 1.

Proof. For i = 1, . . . , k − 1, consider the hyperplanes

Vi = {(x1, . . . , xn) ∈ Fnq : xi = 0} ⊂ Fnq .

Then C ∩
⋂k−1
i=1 Vi has dimension at least k − (k − 1) = 1. It contains a non-

zero vector v having at most n − k + 1 non-zero entries. Hence, we have the
inequality d ≤ D(0, v) ≤ n− k + 1.

Definition 27. An [n, k, d]-code is called a maximal distance separable code,
or short-hand MDS code, if it satisfies d = n− k + 1.

Example 28. Both the parity bit code (see Example 1) and the repetition
code (see Example 3) are MDS codes.

Exercise 29. Does there exist a [7, 4, 4]-code over F2?

There are also positive results about the existence of codes.

Theorem 30 (Gilbert-Varshamov bound). Let q be a prime power and let
n, k, d ∈ Z≥1 satisfy

d−1∑
i=0

(
n

i

)
· (q − 1)i < qn−k+1.

7

Then there exists an [n, k,≥d]-code over Fq.

Proof. Let ` be maximal such that there exists an [n, `,≥ d]-code C over Fq.
Suppose, on the contrary, that ` < k. For each code word x ∈ C consider the
ball Bd−1(x) ⊂ Fnq consisting of all words at Hamming distance at most d− 1
from x. Then

|Bd−1(x)| =
d−1∑
i=0

(
n

i

)
· (q − 1)i.

The code C has q` code words, hence∣∣∣∣∣⋃
x∈C

Bd−1(x)

∣∣∣∣∣ ≤ q` ·
d−1∑
i=0

(
n

i

)
(q − 1)i < qn+`−k+1,

by assumption. As ` ≤ k − 1, the latter is less than or equal to qn. In other
words, there is a word y ∈ Fnq such that D(x, y) ≥ d for each x ∈ C.

Now the claim is that C + Fq · y is a [n, ` + 1,≥ d]-code, contradicting the
maximality of `. Hence, ` ≥ k, and then the existence of an [n, k,≥ d]-code
follows immediately.

Exercise 31. Prove the claim in the proof of Theorem 30.

There are several practical problems with this bound. On the one hand, it
is quite far from sharp. But, more problematically, it does not provide codes
that can be used in a practical way. Especially the decoding (i.e. the process
of determining which code word is most likely after having received a message
with errors) is not efficient for these codes. This is one of the reasons why
people study geometric codes.

5 Geometric codes

In this section, we will discuss some codes that use curves over finite fields,
but first we start off with a very classical code.

Example 32 (Reed-Solomon code). Let Fq = {a1, . . . , aq} be the finite field
consisting of q elements. Let n and k be integers such that 1 ≤ k ≤ n ≤ q.
Consider the vector space Pk of polynomials in Fq[x] of degree at most k− 1.
Let

ϕ : Pk → Fnq : f 7→ (f(ai))
n
i=1

Now let C be the image of Pk inside Fnq . We claim that C is a [n, k, n−k+1]-
code. This is an MDS code.

8

Exercise 33. Prove the claim in the example above.

Remark 34. A very naive decoding algorithm for this Reed-Solomon code
would be as follows. Suppose you received the values (xi)

n
i=1. Then, for each

k-element subset
S = {i1, . . . , ik} ⊂ {1, . . . , n},

use Lagrange interpolation to find the polynomial fS that goes through the
points (aij , xij) for j = 1, . . . k. For each such fS, calculate the number of
indices i, such that fS passes through (ai, xi), and then pick the S for which
this number is maximum.

As there are
(
n
k

)
subsets S consisting of k elements, this decoding algorithm

is not very efficient. For example, for n = 255 and k = 249 (which are
numbers that are being used in practice), there are already more than 300
billion subsets to check.

In fact, using a slightly alternative interpretation of the encoding scheme,
there does exist a decoding algorithm that runs in reasonable (i.e. polynomial)
time.

Definition 35 (Goppa code). Let C/Fq be a smooth projective curve. Let
P1, . . . , Pn be Fq-rational points of C. Let D be a divisor on C, such that the
Pi are not in the support of D (i.e. they do not occur in the sum). Then the
Goppa code associated to (C,D) is the image of the map

L(D)→ Fnq : f 7→ (f(P1), . . . , f(Pn)),

where L(D) = {f ∈ k(X) : div(f) + D ≥ 0} is the Riemann-Roch space
associated to D.

Example 36. If you take C = P1
Fq

and D = (k − 1) · (∞), then you get the
Reed-Solomon code descibred before.

Exercise 37. Verify this.

Example 38. Let C ⊂ P2
F2

be the smooth curve given by the homogeneous
equation x3 + y3 + z3 = 0. There are three rational points on this curve
P = (1 : 0 : 1), Q = (0 : 1 : 1) and R = (1 : 1 : 0). Consider the divisor
D = 3 · P . We are going to contruct the Goppa code associated to (C,D).
To do this, we first need to calculate L(D).

Consider the affine patch z 6= 0 (also denoted by “z = 1” by Griffon). On
this patch the curve is given by X3

z + Y 3
z + 1 = 0. The function Yz vanishes

at the point P and it only vanishes once there. Hence, the functions, on this

9

affine patch, with at most a pole of order 3 are of the shape

F (Xz, Yz)

Y 3
z

for some F (Xz, Yz) ∈ F2[Xz, Yz]/(X
3
z + Y 3

z + 1).

Now we need to find those functions that do not have a pole outside of the
affine patch z 6= 0. There are three points on C with z = 0: R, (1 : ζ3 : 0)
and (1 : ζ23 : 0), where ζ3 ∈ F4 is a third root of unity.

Hence, we go to the affine patch x 6= 0. On this patch the curve is given by
1 + Y 3

x +Z3
x = 0, and the coordinates are related to Xz and Yz by Xz = 1/Zx

and Yz = Yx/Zx. So, we are considering the function

F (Xz, Yz)

Y 3
z

=
F (1/Zx, Yx/Zx)Z

3
x

Y 3
x

.

As Yx 6= 0 for all three points in question, it suffices if F (Xz, Yz) would consists
of terms of “degree 3” at most, i.e. F can only consist of the monomials
1, Xz, Yz, X

2
z , XzYz, Y

2
z , X

3
z , X

2
zYz, XzY

2
z and Y 3

z = X3
z + 1.a

The function Y 3
z also vanishes (with order 3) at the points (ζ3 : 0 : 1) and

(ζ23 : 0 : 1). Hence F should also vanish with order at least 3 in these two
points. This can only be achieved if F is a multiple of Y 3

z or X2
z + Xz + 1,

or a linear combination thereof. Hence, the Riemann-Roch space L(D) is

generated by 1, X2
z+Xz+1
Y 3
z

= x2z+xz2+z3

y3
and Yz(X2

z+Xz+1)
Y 3
z

= x2+xz+z2

y2
.

Now if we evaluate these three functions in Q and R, then we get 1, 1, 1,
and 1, 0, 1, respectively. Hence, the Goppa code associated to (C,D) is the
vector space spanned by (1, 1), (1, 0), (1, 1) inside F2

2.

aThis is not obvious at all. One could potentially allow extra factors of Zx in the
denominator, as long as it does not give rise to extra poles at any of the points three
points. The only way to achieve this, is if the numerator is a multiple of Yx − 1, Yx − ζ3
and Yx − ζ23 , but then the numerator will be a multiple of Y 3

x − 1 = Z3
x.

The advantage of using the Goppa code, instead of the Reed-Solomon code, is
that one can choose the field Fq somewhat smaller, as the curve C/Fq could
potentially have up to q + 1 + 2g

√
q points (approximately), cf. the Hasse-

Weil bounds. When doing computations with error probabilities as we did in
Exercise 2 and 4, one finds that longer codes (i.e. codes for which n is relatively
large in comparison to q) can generally perform better than shorter codes.

Although the Goppa code is not MDS in general, it is still fairly close. One
can use the bounds in the next lemma to improve upon the Gilbert-Varshamov
bounds (see Theorem 30), see for example [vL99].

10

Lemma 39. Assume that D is a divisor on C of degree at least 2g − 1 and
at most n − 1. Then the Goppa code G associated to (C,D) has dimension
deg(D)− g + 1 and minimum distance d ≥ n− deg(D).

Proof. By Riemann-Roch L(D) has dimension deg(D) − g + 1. Hence, for
the first claim it suffices to prove that α : L(D) → Fnq is injective. Any
f ∈ kerα is contained in L(D − P1 − . . . − Pn), which is the zero space as
deg(D − P1 − . . .− Pn) is negative by assumption.

If α(f) 6= 0 has distance d from 0, then f has at least n − d zeros, say in
Pi1 , . . . , Pin−d

. Then 0 6= f ∈ L(D − Pi1 − . . . − Pin−d
). Hence, the divisor

D − Pi1 . . .− Pin−d
must have non-negative degree and deg(D) ≥ n− d.

6 Using Magma to study codes

In this section, we will try to construct the code from Example 38 using Magma.
Documentation for Magma can be found online. A lot of the documentation has
been put inside Magma. For example, you can see the different ways to construct
a projective space by typing:

?ProjectiveSpace

?1

?2

First we define the projective space and the curve inside it:

P2<x,y,z> := ProjectiveSpace(GF(2), 2);

C := Curve(P2, x^3 + y^3 + z^3);

We can find the rational points:

L := RationalPoints(C);

print L;

P := L[1];

Q := L[2];

R := L[3];

Next one defines the divisor D and we calculate its Riemann-Roch space:

D: = 3*Divisor(P);

B := Basis(D);

print B;

11

https://magma.maths.usyd.edu.au/magma/handbook/

The output,

[

1,

1/$.1^3*$.1^2 + 1/$.1^3*$.1 + 1/$.1^3,

1/$.1^2*$.1^2 + 1/$.1^2*$.1 + 1/$.1^2

]

is completely incomprehensible. Here there are two symbols $.1 occurring,
and they are different elements of the function field of C. Fortunately, there is
a function ProjectiveFunction that does give human-readable output. This
gives exactly the basis we found in Example 38:

print [* ProjectiveFunction(f) : f in B *];

Now we can let Magma evaluate these functions in the other two points:

M := Matrix([[f(p) : f in B] : p in [Q,R]]);

print M;

Then we can generate a code in Magma (be aware, this is not the Goppa code,
the matrix has been transposed to make it more interesting) and take random
code word:

Co := LinearCode(M);

v := Random(Co);

print v;

Magma is also able to decode words using a (slow) algorithm for linear codes:

V := AmbientSpace(Co);

print V;

v := V![0,1,1];

print Decode(Co, v);

Exercise 40. Use Magma to construct an [n, k, d]-code using algebraic geometry
with k, d ≥ 200 and n ≤ 450, just as we did above. Generate a random code
word, randomly change 10 entries of the vector and try to decode the word.

12

Exercise 41. Use Magma again to repeat the previous exercise, but this time
use the specific algebraic-geometric procedures that are implemented in Magma.
Look up the functions AGDualCode and AGDecode in the Magma handbook.

References

[Magma] W. Bosma, J. Cannon, C. Playoust. The Magma algebra system. I.
The user language. J. Symbolic Comput. 24 (1997), no. 3–4, 235–265.

[Hin11] M. Hindry, Arithmetics. Translated from French. Springer, London,
2011.

[vL99] J. H. van Lint, Introduction to coding theory. Third edition. Graduate
Texts in Mathematics, 86. Springer-Verlag, Berlin, 1999.

[NX09] H. Niederreiter, C. Xing, Algebraic geometry in coding theory and cryp-
tography. Princeton University Press, Princeton, NJ, 2009.

[Sti09] H. Stichtenoth, Algebraic function fields and codes. Graduate Texts in
Mathematics, 254. Springer-Verlag, Berlin, 2009.

13

	Introduction
	Basic definitions and terminology
	Construction of codes
	Bounds on codes
	Geometric codes
	Using Magma to study codes
	Bibliography

