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Introduction
Reduction of elliptic curves and BSD

Consider an elliptic curve E over Q. The reduction of E modulo p can be:

o elliptic curve E, over F,: good reduction,

@ projective line with a cusp: additive reduction, (>< < L><

@ projective line with a node: multiplicative reduction.

Definition

The L-function of E is L(E,s) =], Lo(p~°)~", where

1—a, T +pT? if E has good reduction at p
L(T)=<1+T if E has multiplicative reduction at p ,
1 if E has additive reduction at p

and a, = p+ 1 — |Ep(Fp)|.

Conjecture (Birch and Swinnerton-Dyer)

The L-function extends to a holomorphic function C — C and has a zero of
order tk(E) at s = 1.
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Stable curves

One can define the L-function for higher genus curves using their stable
reduction.

Definition

A stable curve is a connected reduced (but not irreducible) curve such that
@ every singular point is an ordinary double point (node),

@ every geometric compoment of genus 0 has at least 3 singular points,
where self-intersections are counted twice,

@ the arithmetic genus (sum of the genera of the components + the
number of loops) of the curve is at least 2.

In the following example, the thick line represents a component of @

genus 1 and the thin line one of genus 0. This is a stable curve of
artihmetic genus 3.
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Stable reduction

Theorem (stable reduction theorem)

Let C be a curve over a number field and let p be a prime. After a finite
extension of the base field, C admits a model over Oy, such that the
reduction modulo p is a stable curve.

| A

Example

Elliptic curves always obtain either good or multiplicative reduction after
extending the base field. This depends on whether the j-invariant of the
curve lies in Oy or not.

v

Note that the stable reduction does not change, if one extends the field even
further.

Given a curve, determine its stable reduction.
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How many types of stable reduction?

What are the combinatorial types of stable curves of a fixed arithmetic genus?

Starting from some stable type, there are two ways you can degenerate it:

@ replace a component of genus g by a component of genus g — 1 with a
self-intersection;

@ replace a component of genus g by two components of genera g1 and g
such that g1 + g» = g, and then redistribute the intersection points of
the original component.
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Introduction
All 42 stable reduction types for genus 3 curves
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Hyperelliptic curves
Cluster pictures for hyperelliptic curves

Dokchitser, Dokchitser, Maistret, and Morgan introduced the machinery of
cluster pictures for hyperelliptic curves. The idea is to study the arithmetics
of an hyperelliptic curve y*> = f(x) over Q,, for p > 2, by considering the
p-adic distances between the roots of f(x).

Example
Let p > 5 and let

H:y? = x(x —1)(x — 2)(x — 3)(x — 4)(x — 5)(x — p)(x — 2p).

Three of the roots are p-adically closer to each other than to the rest of the
roots, so H has the following cluster picture.

@0000000

Replacing each root r by #, we obtain an equivalent cluster picture.

Q0009009




Hyperelliptic curves
An example of stable reduction

While it was of course already known how to determine the stable reduction
of a hyperelliptic curve, cluster pictures provide a convenient and conceptual
way to think about it.

Example

Reducing the equation, modulo p, for
H: 2 = x(x — 1)(x — 2)(x — 3)(x — 4)(x — 5)(x — p)(x — 2p)
we get a genus 2 curve with a cusp at (x,y) = (0,0).

If we “zoom in” on the left cluster by substituting x = px’ and y = p*/%y’
we get

y? =X (px = 1)(pX' = 2)(pxX' = 3)(px" — 4)(px" = 5)(x' — 1)(x' —2)
and the reduction is a genus 1 curve with a cusp at infinity.

It turns out the the stable reduction of H is the curve obtained by gluing
these genus 1 and genus 2 curves at their cusps.




Hyperelliptic curves

Cluster pictures and stable reduction

It is not hard to see what clusters of other sizes correspond to. The
statement below for genus 3 can easiliy by generalised to any arbitrary genus.

Theorem

Let H be a genus 3 hyperelliptic curve and H the stable reduction of H
modulo p. Then:

@ a cluster of size 4 corresponds to a decomposition H = E, U E> where
E: and E; are curves of arithmetic genus 1 intersecting in two points;

o a cluster of size 3 or 5 corresponds to a decomposition H= E U C
where E and C are curves of arithmetic genus 1 and 2 intersecting in
one point;

o a cluster of size 2 or 6 corresponds to a node in H not described by a
cluster of size 3, 4, or 5.

0 corresponds to ’KQ;

A\




Cayley octads

What is a Cayley octad?

We will define Cayley octads as a generalisation of the WeierstraB points of a
hyperelliptic curve. This seems to work better than the 28 bitangents.

Consider a plane quartic C: f(x,y,z) = 0 in P2, It turns out there are
essentially 36 ways® to write

f(x,y,z) = det(xL + yM + zN),

where L, M, N are symmetric 4 X 4-matrices. Next, consider L, M, and N as
quadratic forms g, gum, and gy in four variables.

Definition

The 8 intersection points of g, qu, and gy inside P® form a Cayley octad O
associated to C.

5\

Proposition (see book Dolgachev-Ortland)

The points of O are non-degenerate: no two coincide, no three lie on a line,
no four on a plane, and no seven on a twisted cubic.
Moreover, the curve C is uniquely determined by O.

A\

1The 36 ways correspond to the 36 even theta characteristics of C, i.e. the divisor classes D
such that 2D = K¢ and dim(£(D)) is even.



Cayley octads

Reconstructing the plane quartic

o Start with 7 points A to G in P* such that:

no two coincide;

no three lie on a plane;

no four lie on a plane;

n? sever31 lie on a twisted cubic curve, i.e. the image of a degree 3 map
Pt — P°.

@ In total, the space of quadrics in 4 variables has dimension 10, so we
expect a 3-dimensional subspace (g1, g2, g3) to go through A to G.

o By Bézout's theorem, the three quadrics g1, g2, and g3 intersect in 8
points. Let H be the eighth intersection point.

@ The three quadrics parametrise a projective plane P2, and the singular
quadrics in there form a curve: the plane quartic curve.



Cayley octads

Degenerations of Cayley octads

Let p > 3. Just as the 8 WeierstraB points of a hyperelliptic curve could
coincide modulo p, the Cayley octad can degenerate modulo p.

The 8 points in the Cayley octad are not independent; any point is uniquely
determined by the other 7 points. As a consequence, the degenerations that
can actually occur for O can be a bit more complicated. For example, if 4 of
the points of O lie on a plane, this forces the other 4 points to also lie on a
plane, in most cases?.

These degenerations are related to the stable reduction of the curve.

Theorem (see book Dolgachev-Ortland)

The points of O degenerate to 8 distinct points on a twisted cubic modulo p,
if and only if C has good hyperelliptic reduction. Moreover, the 8 points on
the twisted cubic are the 8 WeierstralB3 points of the hyperelliptic curve.

2There are more degenerate situations in which this is not true, e.g. when two points
coincide.



Cayley octads

Another degeneration of the Cayley octad

Consider the case in which four points (and the four complementary points)
lie on a plane modulo p.

The Cayley octad, which also comes with an embedding® of C into P3, then
degenerates to the picture above. We get a genus 2 curve and another
component, which is the intersection of the two planes on which the 8 points
lie. The components intersect twice.

In the situation described above, the stable reduction of C is a genus 2 curve
with a node.

3This embedding comes from taking ‘one and a half’ times the canonical divisor.



Cayley octads

Classifying degenerations

We introduce four types of degenerations which we conjecture to
correspond to specific degenerations in the stable reduction of the curve.

type of block corresponds to pictures
[
a-blocks clusters of size 2 or 6 L
x-blocks clusters of size 3 or 5 ﬁ
¢-blocks clusters of size 4 K \ ) —|_
Y
N
hyperelliptic blocks hyperelliptic reduction i 2 i

The stable reduction of a plane quartic is determined by the above
degenerations that occur in (any of) its Cayley octad(s).




Degenerations

Valuation data

We define valuation data to quantify the degenerations of a Cayley octad.

Let A to H be a Cayley octad in P®. Then we define its valuation data v as:

@ for each of the (2

) = 70 quadruples of points
X=(o:x1:x:x3), Y=00:y1:y2:)3)
Z=(z:zn:2:23), W= (wo:wi:w:ws)

normalised such that min(vk(x0), ..., vk(x3)) = 0, where vk is the

valuation, and similarly for Y, Z, and W, the integer

Xo Yo 20 Wo
X1 y1 21 wm

Vivzu i= Uk | det v )
X2 Yo 2 W2

X3 Y3 Z3 W3

which measures the multiplicity with which X,Y,Z, and W lie on a plane.

@ an integer v; measuring the multiplicity with which A to H lie on a
twisted cubic.




Degenerations

Example valuation data

Take A=(1:0:0:0),B=(1:p:0:0), and the other points generic.
Then vapex = 1 and all other valuations are 0. We denote this valuation data
by vgf.

Think of v} as a vector with 71 entries: one for each quadruple of octad
points, and one entry for the twisted cubic index.

The geometry of the picture determines the valuation data, but the converse
is very subtle. For example, it is not true that A and B collide if and only if all
of the entries of v — vp‘f are non-negative. For example, you can put the 8
points on a plane without A and B colliding.




Degenerations

Standard valuation vectors

We define:

@ v;y: valuation data corresponding to points coinciding;

@ v, : valuation data corresponding to points lying on a line;
@ v;i,: valuation data corresponding to points lying on a plane;

@ Vi.: valuation data corresponding to A to H lying on a twisted cubic.

Remark

Just like in the case of cluster pictures, the valuation data will change if you
change the coordinates, i.e. if you apply a PGL3-transformation.

In our example, if we multiply the first coordinate by p, then the points A

and B mapping to (1:0:0:0) and (1:1:0:0) no longer coincide.

However, the other points will all end up on the plane x =0, e.g.
(1:2:3:4)+—(p:2:3:4),

so the new valuation data is vop, o




Degenerations

Alpha blocks (nodes)

We define:
®
©

©

AB __ | AB
o oy, = th!

CDEFGH

@ @ ° a‘i% = Vpln

©)

® We define:
® @ ° aABCD __ ., ABCD + EFGH
@ @ 2a — Vpln pln 1
@ @ ° ag%CD — VS]BI?D + VII:ECD-

Remark

Note that o> and aff are PGLs-equivalent, and similarly a5 and asbe®.

e valuations a7, and are no 3-equivalent, but are relate a
The valuat 48 and adE® t PGL lent, but lated b
so-called Cremona transformation.

Out of the 36 octads, 16 will have a a.-block, and 20 will have a ai,-block.




Degenerations

Chi blocks (genus 1 tails)

C ) We define:

AB|CDE|FGH

X1 = max(viy® + iy Von ),
. X?E\CDE\FGH _ max(vﬁf, Vgic]:DE + VSEGH)r
Xﬁ\CDE\FGH _ max(ler?cDE + Vlcr?E7 Vglt)E)_
) (&) We define:
® 0 exgo v
© ® @ exowriur
® © ° XA = vl + VIR,

In this case, out of the 36 Cremona equivalent octads, 30 have a x1.-block
and 6 have a x2.-block.




Degenerations

Hyperelliptic blocks

Definition

@ @
®

We define TCu = vic.
©

® ©
®

®

We define Line = 2.

@ @

©
O]
®

©

Remark

In this case, out of the 36 Cremona equivalent octads, 1 has a TCu-block,
and the other 35 have a Line-block.




Degenerations

Phi blocks (1=1)

0] ()
®

- AB|CD||EF|GH ABEF ABGH ABCD EFGH
We define qblal IIEF|ca Vin T Vin o+ Vol Vpin s -

. ABC|FGH DE ABCD ABCE
g\/@ We define ¢, IFeH Vot T Vin Vip osee

o ABCD ABCD ABCD ABCD
We define ¢31," = vir - +Vip~ + Voln 5 - -

In this case, out of the 36 Cremona equivalent octads, 18 have a ¢1.-block,
16 have a ¢a.-block, and 6 have a ¢3.-block.

One can think of a phi-block as a sum of an alpha-block and two
hyperelliptic block.




Degenerations

Combining blocks

With cluster pictures of hyperelliptic curves one cluster is always contained

in, containing, or completely disjoint from any other cluster. Similarly, there
are rules for how Cayley octad pictures can be combined. For example, the

pairs in the a-block can never overlap.

The valuation data of any Cayley octad is an admissible sum of a-, ¢-, Xx-,
and hyperelliptic blocks. Up to PGLs-equivalence this sum is unique.

Proof sketch (work in progress).

Because the 8th point of the Cayley octad is determined by the first 7, the
valuation data has certain restrictions. We study the space of possible
valuation data using tools from tropical geometry, and through an extensive
computation prove that they are all admissible sums of the building blocks
we defined.

The uniqueness follows from an extensive linear algebra computation and can
be found in our article and the accompanying code. O




Degenerations

Towards a proof (work in progress)

Remember how we “zoomed in” on a cluster in the case of hyperelliptic
curves, to see a part of the stable reduction. Our proof strategy is similar, by
zooming in on certain parts of the octad picture, it seems that we can see
parts of the stable reduction.

Non-hyperelliptic case:

@ one or two main components (depending on whether there is a
x-block), which has:

e a cusp for every ¢-block,
e a node for every visible a-block,
o a tacnode for the other main component, in case there is a x-block,
@ one genus 1 tail component for every ¢-block, which has a very bad
singularity at the place where the main component glues in, and it could
have a node for a visible a-block.

Hyperelliptic case: the quartic could reduce to the square of a degree 2
function. We end up getting a toggle model, i.e.

Q@ +p°G =0,

where @ mod p does not divide G mod p. The 8 intersection points of Q
and G are the WeierstraB points of the hyperelliptic curve.



Algorithmic aspects
Overview

Algorithm (Main algorithm)

Input: plane quartic curve C: f(x,y,z) = 0 and a prime p.
Output: stable reduction of C modulo p.

© Compute a Cayley octad O for C.
@ Compute valuation data v for O.

© Decompose v into building blocks.

@ Zoom in into different blocks to get different parts of the reduction.




Algorithmic aspects
Finding a Cayley octad

Algorithm (Plaumann-Sturmfels-Vinzant)

Input: plane quartic curve C: f(x,y,z) =0.
Output: a Cayley octad associated to C.

© Write down a generic line ax + by + cz = 0 and find and solve the
equations in a, b, ¢ for the line to be a bitangent. This requires a big
field extension!

@ Pick three bitangents /1, {2, {3 going through points of bitangency
Pi,...,Pson C. We need P; + ...+ Ps — Kc to be an even theta
characteristic. If the next steps fail, try a different triple ¢1, ¢2, ¢3.

© Compute the 4-dimension subspace V consisting of those elements of
the 10-dimension space of cubics in x, y, z, that go through P1, ..., Pe.

Q@ Let voo = l1l243, vo1, Vo2, Vo3 be a basis of V. Find cubics vj; such that
VoiVoj — VooVij = 0 mod f.

Q Let V = (vj)}j—p. Now M = - V is a matrix of linear forms
satisfying det(M) = X - f(x, y, z) for some constant A. Use this to find a
Cayley octad.




Algorithmic aspects

Finding the block decomposition

Algorithm

Input: valuation data v of a Cayley octad.
Output: decomposition of v as a sum of building blocks.

© Find all building blocks B that occur in v, i.e. such that the entries of
v — B are non-negative.’

@ Construct all possible (maximal) subsets of these building blocks that
are mutually compatible, i.e. such that the building blocks satisfy the
rules that determine which ones can be combined.

© For each subset, use linear algebra to check if v can be written as a
linear combination of these building blocks.

?Note that there can be a lot of such building blocks. The fact that v — B has non-negative
entries does not guarantee that B occurs in the block decomposition of v.

Remark

Because of a large precomputation that we did, we know that v has a unique
decomposition in building blocks. However, because of the large number of
subsets that may occur in Step 2 of the algorithm, it can take some time to
find this decomposition.




Algorithmic aspects

Challenges

Question

The algorithm requires to find a large field extension over which the
bitangents can be defined. Is it possible to find the valuation data of the
Cayley octad without computing in this field extension?

Question

| A

Because of the large number of potential building blocks, the decomposition
of v into building blocks is combinatorially expensive. Are there ways to
make this faster?




Spin curve structures

Degenerations of theta characteristics

Definition
A theta characteristic on a curve C is a divisor class D such that 2D = K,

where K¢ is the canonical divisor class.
Up to linear equivalence, there are 226°S(C) theta characteristics.

How does this generalise to stable curves?

The answer to the question is: spin curve structures. | will not give a full
definition, but will instead consider two examples.



Spin curve structures

Genus 2 glued to genus 1

Example

Consider a curve of the type h

In this case, a spin curve structure consists of:
@ a theta characteristic on the genus 2 curve (10 even and 6 odd),
@ a theta characteristic on the genus 1 curve (3 even and 1 odd).
There are two ways to get an even theta characteristic:
@ two even theta characteristics (3 - 10 = 30 combinations),

@ two odd theta characteristics (1 -6 = 6 combinations).

Remark

| \

There are 30 Cayley octads with a T block, and 6 with a". . block.

We conjecture that this corresponds exactly to these different types of spin
curve structures.




Spin curve structures
Genus 2 with a node

Example

Consider a curve of the type &: a genus 2 curve with points P and Q glued.

Type A spin curve structure.
A divisor class D such that 2D = K¢ + P + Q. There are 32 such divisor
classes and half of them are even, the other half is odd.

Type B spin curve structure.

Blow up the stable curve in the point P = Q. Take a line bundle
corresponding to a theta characteristic on the genus 2 curve, and a degree 1
divisor on the P* we just created by blowing up. Of these spin curve
structures, 20 are even and 12 are odd (as for genus 2 curves).

Remark

O |

There are 16 Cayley octads with a *. . " block, and 20 with a *. . block.

We conjecture that this corresponds exactly to these different types of spin
curve structures.




Spin curve structures

Correspondence between Cayley octads and spin curve structures

There is a one-to-one correspondence between the combinatorial types of
Cayley octad pictures and the combinatorial types of spin curve structures on

a stable curve.

We have verified the conjecture combinatorially: the number of Cayley octad
pictures of certain shapes and the number of combinatorial types of spin
curve structures match up.

We currently have no proof that relates this to the curve.



Want to read more?

o Article: arXiV:2309.17381
o Magma package: github.com/rbommel/g3cayley



https://arxiv.org/abs/2309.17381
https://github.com/rbommel/g3cayley

Hyperelliptic reduction types

In genus 2 all curves are hyperelliptic. In genus 3 (and higher) the situation
is more complicated.

Definition

A stable curve C is called hyperelliptic if it admits an automorphism
p: C — C of order 2 such that:

@ at each node fixed by ¢, the action of ¢ has determinant 1, i.e. it either
mirrors both components or keeps them both in the same orientation;

o the quotient C/¢ is of arithmetic genus 0, i.e. a tree of P's.

In genus 3 (and higher), there are reduction types that:

@ are always hyperelliptic, e.g. Q (take involutions swapping the two
nodes on both genus 1 components),

@ are never hyperelliptic, e.g. \‘I‘I[ (there is no space for three clusters of
size 3 in a cluster picture with 8 roots),

@ are sometimes hyperelliptic, in which case the locus of hyperelliptic
curves has codimension 1 in the moduli space, e.g. in the case (a
genus 1 curve E with P glued to P’ and Q glued to Q' is hyperelliptic if
and only if [P] +[P'] — [Q] — [Q'] = 0 € CI(E)).



Cremona transformations

There are 36 Cayley octads for each plane quartic curve. However, if you
have one of these Cayley octads, you can find the others.

Definition

Let A, B, C,D be four points of a Cayley octad O. Apply a PGL3
transformation mapping these points to (1:0:0:0), (0:1:0:0),
(0:0:1:0), and (0:0:0:1). The Cremona transform of O with respect
to ABCD is the octad obtained by applying the transformation

(x:y:z:w)m (2:1:1. 1)

x 'y z ' w

to the other four points.

Note that the Cremona transforms with respect to ABCD and EFGH are
PGLs-equivalent.

Suppose O is a Cayley octad associated to a plane quartic curve C. Then
the 35 Cremona transforms of O are exactly the other 35 Cayley octads
associated to C.
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