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Abstract. In this talk, I will explain how one can efficiently compute regula-
tors for Jacobians of plane curves, using Arakelov intersection theory. This talk
is based on joint work with David Holmes and Steffen Müller, see [vBHM18],
and is a continuation of [Hol12] and [Mül14].
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1 Regulator of a Jacobian

Let C be a smooth projective geometrically irreducible curve of genus g over Q,
let J = Pic0(C) be its Jacobian, and let K be the Kummer variety associated
to J , i.e. the variety obtained by identifying every point in J with its inverse.

Let D ∈ Picg−1(C) be a divisor class on C such that 2 ·D = KC , where KC is
the canonical divisor class. Then the image of the map

Cg−1 −→ J : (P1, . . . , Pg) 7−→ [P1 + . . .+ Pg−1]−D
is called a Theta divisor Θ of J . Its class depends on the choice of D, but the
divisor class of 2Θ does not.

The divisor 2Θ is not very ample, but it descends to K, where it gives rise
to a very ample divisor. This very ample divisor on its turn, gives rise to an
embedding of K inside P2g−1.
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In this way, we can associate to each point P ∈ J(Q) a point (x1 : . . . : x2g)
inside P2g−1(Q). We will assume that x1, . . . , x2g ∈ Z are primitive (i.e. not
sharing a non-trivial factor).

Definition 1. The naive height of P is

hnaive(P ) = log(max(|x1|, . . . , |x2g |)).

The Kummer height of P is

hKum(P ) = lim
n→∞

hnaive(nP )

n2
.

The canonical (Kummer) height pairing on J is defined by

〈−,−〉Kum : J(Q)× J(Q) −→ R≥0

(P,Q) 7−→ 1

2

(
hKum(P +Q)− hKum(P )− hKum(Q)

)
Remark 2. The height pairing can be extended to Q-points of J easily, but
one has to take care of taking the right normalisation at the different places.
This is beyond the scope of this talk. 4

Remark 3. The height pairing on J × J is related to the Néron-Tate height
pairing 〈−,−〉NT on J × J∨ in the following way:

〈−,−〉Kum = 〈−,−〉NT ◦ (idJ , θ),

where θ is the canonical principal polarisation θ : J
∼−→ J∨, which naturally

arises from J being a Jacobian. 4

By the Mordell-Weil theorem the group J(Q) is finitely generated, and hence
of the shape T ×Zr, where T is a finite group and r is a non-negative integer,
called the algebraic rank of J .

Definition 4. Let x1, . . . , xr be generators of J(Q)/J(Q)tors. The regulator of
J is defined as ∣∣∣det (〈xi, xj〉Kum)ri,j=1

∣∣∣ .
Example 5. Let E be the elliptic curve given by

y2 = x3 + 3x.

Then the Jacobian J is canonically isomorphic to E, and the Kummer embed-
ding is just the projection on the x-coordinate. Moreover, E has rank 1 and
E(Q)/E(Q)tors is generated by the point P = (3, 6). We can then compute

2 · P = (1
4
, 7
8
), 3 · P = ( 27

121
,−1098

1331
), 4 · P = (2209

784
,−121871

21952
), . . .
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For example, we can compute 2000 · P , and then compute the logarithm of
both the numerator and the denominator of the x-coordinate, and divide the
largest of these by 20002. In this way, we obtain 0.5011822707 as candidate
value for the regulator of E. This computation takes more than 8 seconds on
a dedicated computation server and is only accurate for up to 6 digits; the
actual regulator is 0.5011823920. 4

Our goal is to explicitly compute these regulators, i.e. to produce an algorithm
that given an equation for a curve computes the regulator. The method il-
lustrated in Example 5 is not efficient at all. In practice, one decomposes the
regulator in local contributions for each place (both finite and infinite) of Q.
For the finite places, it suffices to look at the discriminant and some other
easily computable arithmetic invariants of the elliptic curves. For the infinite
place, one needs to compute an elliptic integral, which can be done reasonably
fast using AGM (arithmetic-geometric mean) methods.

Another problem with the Kummer embedding K ↪→ P2g−1, however, is that
the ambient space and the number of equations to represent the image of K
therein, grows exponentially with g. For genus 1, 2 and maybe 3, this is not a
big issue, but for higher genus this will become a problem.

In this talk, I will present an alternative way to compute the regulator, using
Arakelov intersection theory. This method was already used for hyperelliptic
curves by Holmes [Hol12] and Müller [Mül14], and now has been extended by
the three of us to the case of plane non-hyperelliptic curves [vBHM18].

2 Introduction to arithmetic surfaces

From now on, we let S be a Dedekind scheme of dimension 1. For this talk, we
will take S = Spec(Z(p)), the spectrum of the ring of rationals with no factor p
in the denominator, where p is a prime. Let η be the generic point of S, with
residue field Q, and let s be the closed point of S, with residue field Fp.

Definition 6. An arithmetic surface A/S is an integral, normal, projective,
flat S-scheme of relative dimension 1.

Example 7. For the prime p = 2, we could for example take the arithmetic
surface A, defined by the equation Y 2Z = X3 + 3XZ2 inside P2 over Z(2).
Then the generic fibre Aη is just the curve E from Example 5 over Q.

On the affine chart Z 6= 0, with coordinates x and y, we consider the point
(x, y) = (1, 0) inside the special fibre As /F2. It corresponds to the maximal
ideal (x − 1, y, 2) in the ring Z(2)[x, y]. The original equation, which can be
rewritten as y2 − x(x − 1)2 − 2x(x − 1) − 4x = 0, is in the square of this

3



maximal ideal. That means that the point is not regular. We can blow this
non-regular point up to get another arithmetic surface, which does turn out
to be regular. 4

Definition 8. Let C /Q be a curve, then a (regular) model of C is the data
of a (regular) arithmetic surface A/S together with an isomorphism Aη ∼= C.

Remark 9. The fact that one can always get a regular model by starting with
any model and repeatedly blowing up non-regular points, is non-trivial. For
reduced varieties over a field of characteristic 0, this problem of resolution of
singularities has been solved by Hironaka. However, for varieties of dimension
greater than 4 over a field of characeristic p > 0, this problem is still open.

In the case of arithmetic surfaces, it is proven and also feasible (though cum-
bersome) in practice using Magma. 4

3 Intersection theory on arithmetic surfaces /

The local contribution at the finite places

Let A/S be a regular model of C /Q. We will consider divisors on A, i.e.
formal sums of integral closed subschemes of codimension 1 (also called prime
divisors). We distinguish two types of prime divisors. The so-called horizontal
prime divisors are those obtained by taking the closure of a point in the generic
fibre C. The vertical prime divisors are irreducible components of the special
fibre As.

If P andQ are two distinct prime divisors, then we can define their intersection

ι(P ,Q) :=
∑

P∈A closed

lengthOA,P

(
OA,P

OA,P (−P) +OA,P (−Q)

)
log |k(P )|,

where k(P ) is the residue field of P .

Example 10. Let A be the regular arithmetic surface over Z(2) defined by the
equation Y 2Z = X3−7XZ2 inside P2

Z(2)
. Let P be the closure of (4 : 6 : 1) ∈ C,

and let Q be the closure of (4 : −6 : 1) ∈ C. Then P and Q only intersect in
the point P = (0 : 0 : 1) ∈ As and

ι(P ,Q) = lengthR

(
R

(x− 4, y − 6) + (x− 4, y + 6)

)
· log(2) = 2 log(2),

where R = OA,P =
(
Z(2)[x, y]/(y2 − x3 − x)

)
(2,x,y)

. Moreover, one can verify

easily that ι(P ,R) = ι(Q,R) = log(2), where R is the special fibre of A. 4
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In the example above, one sees that this intersection does not respect linear
equivalence. However, if D is a horizontal divisor on A whose restriction to C
has degree 0 and Y is the zero locus of p inside A (i.e. the special fibre), then
D·Y = 0. This allows us to extend the intersection pairing to any two divisors
D and E whose restrictions to C have degree 0 and disjoint support (but not
necessarily disjount support on the special fibre).

For a divisor D on the generic fibre C, we let Γ(D) be the divisor on A, whose
horizontal part is D and for which ι(Γ(D),Y) = 0 for all vertical divisors Y .
The divisor Γ(D) can be obtained by computing ι(D,Y) for all vertical divisors
Y and subtracting the appropriate vertical divisor. It is unique up to addition
of multiples of the whole special fibre.

Definition 11. For two divisors D and E on C, of degree 0, and with disjoint
support, we define the local Néron pairing between D and E at p by

〈D,E〉p := ι(Γ(D),Γ(E)).

The way to compute these local Néron pairings, is by computing the aforemen-
tioned intersections. Magma can compute a regular model A of C by repeatedly
blowing up non-regular points. It also keeps track of a disjoint cover of A con-
sisting of constructible subsets. After several reduction steps, making use of
the inclusion-exclusion principle, we can reduce the computation to finitely
many computations of lengths of modules inside rings of finite type over Zp.

4 Green’s functions and theta functions /

The local contribution at the infinite place

For the contribution at the infinite place, we consider C as curve over C. For
each divisor E on C and each volume form ϕ on C, there is the so-called
Green’s function

gE,ϕ : C(C) \ supp(E) −→ R.

It is determined by the following properties (see also [Lang88, II, §1]):

- gE,ϕ has a logarithmic singularity at supp(E);

- ddc gE,ϕ = (deg(E)) · ϕ, where d = ∂ + ∂ and dc = 1
4πi

(∂ − ∂);

-
∫
C
gE,ϕϕ = 0.

This Green’s function is used to define a metric on O(E) and it is also used
to define the local Néron pairing.
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Definition 12. Let D =
∑

P nPP and E be divisors on C of degree 0 with
disjoint support. The local Néron pairing at the infinite place is defined by

〈D,E〉∞ :=
∑
P

nPgE,ϕ(P ).

Remark 13. This pairing is bilinear, symmetric, independent of ϕ, but not
invariant under linear equivalence. 4

In order to compute the contribution at the infinite place, one needs to explic-
itly compute a period matrix for the Jacobian of C and an Abel-Jacobi map
from C to the analytic Jacobian, which is done using code of Neurohr [Neu18].
The calculation can then be reduced to several evaluations of the classical
Jacobi theta function. More details can be found in our paper [vBHM18].

5 Back to the regulator

The following result is due to Faltings and Hriljac.

Theorem 14 ([Fal84, Hril85, Gro86]). Let D and E be divisors on C, of degree
0, with disjoint support. Then

hKum([D], [E]) = −
∑
v

〈D,E〉v,

where we sum over all places, finite and infinite, of Q.

Remark 15. In particular, the sum on the right hand side does respect linear
equivalence, while the summands do not. 4

In order for our algorithm to function in general, we need to:

- move divisors to get divisors with disjoint support (and for practical
reasons with no support at infinity for a certain affine model);

- identify the primes for which there is a local contribution to the height
pairing; these are the primes of bad reduction and the primes for which
we can verify in a quick way that there is intersection.

In the end, our algorithm has two bottlenecks:

- to identify the relevant primes, one sometimes needs to factor a very
large integer; this can probably be avoided by using the idea used in
[MüSt16] to factor into coprimes;

- the Gröbner basis computations are very expensive; a lot of time could
potentially be saved by doing fewer of them; especially when computing
a regulator a lot of work is done multiple times.
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Example 16. We managed to compute the height pairing on the split Cartan
modular curve of level 13, and thereby verified the Birch and Swinnerton-Dyer
conjecture in the following sense. We computed everything, except for the
Tate-Shafarevich group, and the regulator only provably up to squares, and
we numerically checked that the conjecture holds up to squares. This took
about 10 seconds. 4

Example 17. We were also able to compute the height pairing on a curve
with very bad reduction: the curve

3x3y + 5x2 + 5y4 − 1953125 = 0,

for which the special fibre of our regular model at the bad prime 5 has 9
irreducible components. This took several minutes. 4
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