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Abstract. There are several different notions of hyperbolicity, which are conjectured to
be equivalent by Demailly, Green–Griffiths, Lang, and Vojta. We study how these notions
behave in families of varieties, which provides evidence for the conjectures. Moreover, we
study a new weaker notion of hyperbolicity, called mildly boundedness, and use it to prove
new finiteness results for points on certain surfaces and semi-abelian varieties.

1 Introduction

1.1 Complex geometric notions

A

B

X1

X2

On each complex manifold X there is a pseudometric, called the Kobayashi pseudometric,
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obtained as follows. For two points A,B ∈ X(C) we look at all paths of intersecting circles
from A to B, and add the hyperbolic distances (e.g. from A to X1 in the first circle, from
X1 to X2 in the second circle, et cetera). The Kobayashi distance is the infimum of the
sum of the hyperbolic distances for all such paths. In case this defines a metric, X is called
Kobayashi hyperbolic.

On the other hand, a complex manifold X is called Brody hyperbolic if there are no non-
constant holomorphic maps from C to X. For example, C, C∗, abelian varieties, blow-ups
of smooth varieties, and P2 \

⋃4
i=1 `i, where `1, . . . , `5 are lines in general position, are

not Brody hyperbolic. Curves of genus at least 2, C∗ \ {1}, and P2 \
⋃5
i=1 `i are Brody

hyperbolic.

When X is compact, the notions are equivalent.

Theorem 1 (Brody). A compact complex manifold is Kobayashi hyperbolic iff it is Brody
hyperbolic.

1.2 Algebraic notions

Unless otherwise stated, k is a field of characteristic 0, k is its algebraic closure, and
curves/varieties are defined over k.

There are also some algebraic notions of hyperbolicity. Here we need X to be a projective
variety over k. We fix an ample line bundle L on X and consider morphisms ϕ from
algebraic curves C to X. We say X is

(a) algebraically hyperbolic, if deg(ϕ∗ L) is bounded linearly in genus(C);

(b) 1-bounded, if deg(ϕ∗ L) is bounded by a constant only depending on C;

(c) bounded, if for any irreducible variety V , there are only finitely many polynomials
occurring as the Hilbert polynomial of τ∗ L with τ : V → X;

(d) groupless, if X does not admit a non-constant morphism from a positive dimensional
algebraic group;

(e) of very general type, if every closed subvariety of X is of general type;

(f) arithmetically hyperbolic, if for every finitely generated subring A ⊂ k and every
model X/A with Xk ∼= X, the set of points X (A) is finite.

For example, a projective curve satisfies either of these conditions iff its genus is at least
2. Also, if X and Y both have one (or more) of the hyperbolicity properties, then their
product X × Y has the same property.

Conjecture (Demailly, Green–Griffiths, Lang, Vojta). The six notions (a) to (f) are
equivalent. Moreover, over the field C, the notion is conjectured to be equivalent to X
being Kobayashi/Brody hyperbolic.

Partial results are known. For example, it is known that (a) ⇒ (b) ⇔ (c) ⇒ (d) and
(e), (f)⇒ (d). In some special cases the conjecture is known.

Theorem (Bloch-Kawamata-Ochiai, Faltings, Kawamata-Ueno). Let X be a closed sub-
variety of an abelian variety over k. Then the full conjecture holds for X.
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1.3 Properties of hyperbolicity

A subset of a noetherian scheme S is called Zariski-countable closed if it is a countable
union of Zariski closed subsets. This defines the Zariski-countable topology on S. Our
first result is the following.

Theorem 2 (Demailly, Nakayama, Javanpeykar-Vezzani, Van Bommel-Javanpeykar-Ka-
menova). Let S be a noetherian scheme over Q, and let X/S be projective. Then the set of
s ∈ S such that the geometric fibre Xs̄ is algebraically hyperbolic/(1-)bounded/groupless/of
very general type is Zariski-countable open.

It is unknown whether (some of) these loci are actually Zariski open. It is known that the
Kobayashi hyperbolic locus is open in the complex analytic topology for compact families.

We know the following: if X has one of the first five properties over k and k ⊂ L, then
XL has the same property. For arithmetic hyperbolicity this is not known.

Question: if X is arithmetically hyperbolic over Q, is it then also arithmetically hyper-
bolic over C? Or, equivalently, if X has “finitely many points over number rings”, does
X have “finitely many points over any finitely generated ring”?

Our second result gives a positive answer for certain surfaces.

Theorem 3. Let X be an arithmetically hyperbolic surface over Q admitting a morphism
to some abelian variety, such that the image is 2-dimensional. Then XC is arithmetically
hyperbolic.

The proof makes uses of the notion of mildly bounded varieties, which will be explained
in the next part.

2 Mildly bounded varieties

A variety X over k is called mildly bounded if, for every smooth quasi-projective connected
curve C, there are points c1, . . . , cm ∈ C(k) such that, for every x1, . . . , xm ∈ X(k) the set

Hom((C, c1, . . . , cm), (X,x1, . . . , xm))

of m-pointed morphisms is finite.

A non-example is A1, which is not mildly bounded as there exist morphisms of arbitrary
high degree using Lagrange interpolation.

The following result gives rise to quite a few examples.

Theorem 4. If X maps quasi-finitely to its Albanese variety, then X is mildly bounded.

In particular, the following varieties are mildly bounded:

- all smooth connected curves except P1 and A1;
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- all semi-abelian varieties;

- anything with a quasi-finite map to such a variety.

Proof sketch. Without loss of generality we can shrink C and assume C maps injective
into its Albanese variety Alb(C). Then any morphism C → X gives rise to a morphism
Alb(C)→ Alb(X), and for any c ∈ C(k) and x ∈ X(X), the induced map

HomPtdVar/k((C, c), (X,x))→ HomAlgGrp/k(Alb(C),Alb(X))

has finite fibres. Hence, it suffices to show that we can find d1, . . . , d` ∈ Alb(C)(k) such
that, for any y1, . . . , y` ∈ Alb(X)(k), the set

HomAlgGrp/k((Alb(C), d1, . . . , d`), (Alb(X), y1, . . . , y`))

is finite. We can then choose d1, . . . , d` such that they generate a dense subgroup of
Alb(C).

We also proved that the mildly bounded locus of a family of varieties is Zariski-countable
open. As a consequence we get the following corollary.

Corollary 5. Let X be a mildly bounded projective variety over k. If k ⊂ L has finite
transcendence degree, then XL is mildly bounded.

Proof sketch. The idea is to find a variety S over k with function field L. Then we spread
out XL to a projective scheme X → S. Its special fibres are mildly bounded by assumption,
hence its generic fibre XL is also mildly bounded by using the Zariski-countable openness
of the locus.

In fact, we conjecture the following.

Conjecture 6. Let X be a projective variety over k. Then X is mildly bounded if and
only if there is no non-constant map from P1 to X.

We can actually prove this for certain surfaces.

Theorem 7. Let X be a projective integral surface not containing a rational line. Suppose
X admits a morphism to an abelian variety A, and that the image of this morphism has
dimension 2. Then X is mildly bounded over k.

Proof sketch. In Hom(C,X), we distinguish between two types of morphisms: those which
map to a point p in A, and those that do not. Those of the first type will be mildly bounded,
because the fibre of p in X is a curve, which is then forced to be of genus at least 1 and
hence mildly bounded. Those of the second type will be mildly bounded, because A is
mildly bounded.

Using the following lemma of Javanpeykar, we can prove Theorem 3.

Lemma (Javanpeykar). Suppose X is mildly bounded over k, and k ⊂ L is an extension.
Then X is arithmetically hyperbolic iff XL is arithmetically hyperbolic.
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Proof of Theorem 3. As X is arithmetically hyperbolic over Q by assumption, and mildly
bounded by Theorem 7, the result follows from the lemma.

Another result is that semi-abelian varieties over hyperbolic curves are mildly bounded.

Theorem 8. Let S be a hyperbolic curve over k and let X → S be a semi-abelian scheme
of relative dimension d. Then X , considered as d+1-dimensional scheme over k, is mildly
bounded.

The proof uses Silverman’s specialization theorem, which states the following.

Theorem (Silverman’s specialization theorem). Let A be an abelian variety of the function
field K of a curve C. Let σ1, . . . , σn be independent sections of A(K). Then there is a
point in p ∈ C(k), such that the specializations of σ1, . . . , σn to Ap are still independent.

3 Pseudo-hyperbolicity

Take a curve C of genus at least 2, then C and also C × C is hyperbolic. If we then
blow up C ×C in one point, the resulting variety X = Blp(C ×C) is not hyperbolic as it
contains a P1. Hence, hyperbolicity is not a birational invariant.

However, X is almost hyperbolic in the sense that the failure is concentrated in the ex-
ceptional locus ∆ of the blow-up. We say that X is algebraically/arithmetically hyper-
bolic/bounded modulo ∆. In the definition we only consider morphisms ϕ : C → X that
do not land completely in ∆, and points of X (A) that do not lie in ∆.

We then say X is pseudo-algebraically/arithmetically hyperbolic (resp. pseudo-bounded)
if there is a closed ∆ ( X such that X is algebraically/arithmetically hyperbolic (resp.
bounded) modulo ∆.

Conjecture (Lang, Vojta). Let X be projective. Then X is pseudo-hyperbolic if and only
if X is of general type.

In particular, we expect this to be stable under base change, which is our last result.

Theorem 9. Assume X is projective over k, X is pseudo-algebraically hyperbolic, and
k ⊂ L is an extension. Then XL is pseudo-algebraically hyperbolic.

4 One proof

First we sketch a proof of the following result.

Theorem. Let S be noetherian over Q and X/S projective. Then the algebraically hyper-
bolic locus in S is Zariski-countable open.
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Proof sketch. Let Ug → Mg be the universal curve over the algebraic stack of smooth
curves of genus g. Let

Hg,d = HomMg
(Ug, X ×Mg)

be the stack of morphisms of degree d with respect to L from curves to X.

Let Sg,d be the stack-theoretic image of the structure map Hg,d. These are exactly the
points in s for which there is a map from a genus g curve defined over ks, to the fibre Xs.
For a fixed β we define

Sβ =
⋃
d>β·g

Sg,d,

the locus where there is a map of degree greater than β · g.

A priori, Sβ is a countable union of locally closed subsets of S. We then use a classical
result from algebraic geometry to prove that Sβ is Zariski-countable close. In particular,
the non-algebraically hyperbolic locus

Snon−hyp =
∞⋂
β=1

Sβ

is also Zariski-countable closed.
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