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Motivation and definition

Given an elliptic curve E defined over Q and a prime p ∈ Z, there is a good
notion of reduction of E modulo p. Namely, among all possible Weierstrass
equations for E with integer coefficients, one chooses the model E which
minimizes the p-adic valuation of the discriminant (this is called the minimal
Weierstrass model for E at p) and then reduces the equation modulo p,
producing a curve E of genus one over Fp. We also have a notion of reduction
modulo p for points of the elliptic curve, i.e. there is a well-defined group
homomorphism

E(Q)→ E(Fp)

obtained by lifting a Q-valued point of E to a Z(p)-valued point of E and
then reducing modulo p.

It is well known that for any elliptic curve over Q there are primes p such
that the reduction modulo p is a singular curve. These are called primes of
bad reduction. A drawback of bad reduction is that the group structure of
E/Q does not carry over to the reduction E/Fp. Indeed, if a variety over
a field has a group structure, it is necessarily smooth: intuitively, the auto-
morphisms defined by translation by points make the variety look everywhere
the same. One way around this is to remove the singular points of E. The
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resulting variety E
sm

has a group structure, which we obtain at the expense
of projectivity.

Let’s look at an example: consider the elliptic curve given by y2 = x3+3x−4
over Q. There are different types of reductions at different primes. At the
prime 7 the reduction is good; the curve defined by this equation over F7 is
an elliptic curve. At the prime 5 the reduction is multiplicative (a node); the
curve defined by this equation over F5 has a singular point and if we remove
it the remaining points have the structure of the group F∗5. At the prime 3
the reduction is additive (a cusp); the curve defined by this equation over
F3 has a singular point and if we remove it the remaining points have the
structure of the additive group of F3.

The variety E
sm

obtained by removing the non-regular points still has one
serious drawback: we have lost along the way the reduction of points mod p.
Indeed, in general we have no map E(Q)→ E

sm
(Fp), as the reduction map

E(Q)→ E(Fp) need not factor via E
sm

(Fp).

Here is an example: Consider the elliptic curve E/Q given by Weierstrass
equation y2 − x3 + x2 + 49 = 0. At the prime 7 it has bad reduction. The
point (7, 21) ∈ E(Q) extends uniquely to the point (0, 0) ∈ E(F7), which is
singular.

Let K be a number field (e.g. Q and D be a Dedekind domain inside K, such
that Frac(D) = K (e.g. Z or Z(p)).

Given an elliptic curve E/K, it is not always possible to expand it to an
abelian scheme over D. For a long time, people thought that it was in
general impossible to get a model of E over D that has a group structure
and where points can be reduced modulo primes, until André Néron came
up with his construction of the Néron model.

Néron relaxed the criterion of properness and came up with the following
definition.

Definition 1. Let E be an elliptic curve over K. Then a Néron model
N of E over D is a smooth, separated scheme over D together with a K-
isomorphism NK

∼= E satisfying the following universal property (the Néron
mapping property): for any smooth sepatated scheme X over D any K-
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morphism XK → E can be uniquely extended to a D-morphism X → N .

X
∃! // N // SpecD

XK

OO

// E

OO

// SpecK

OO

By its very definition, if a Néron model exists, it is unique up to unique
isomorphism. The definition via the universal property makes it so that N
inherits from E a unique structure of group scheme. To see it, one just
expands the multiplication and inverse maps to N ×N and N respectively.
By the uniqueness part of the Néron mapping property, all properties of the
group structure are preserved.

Now go back one more time to the definition and use the identity map D → D
for the map X → D. We find a bijection

E(K)→ N (D).

On the other hand, if we have a point in N (D), i.e. a point with coordinates
in D, we can take the reduction modulo a prime p. In this way, we obtain
the desired reduction of points E(K)→ N (k(p)).

Theorem 1. Let E be an elliptic curve over a number field K and D a
Dedekind domain contained in K. Then E admits a Néron model over D.

Moreover, it turns out that if E has good reduction at the primes of D, its
minimal Weierstrass model (if it exists) is the Néron model. In the rest of
the presentation we will give an idea of how Néron models look like at primes
of bad reduction.

Remark 1. The formation of Néron models does not in general behave well
under base change, but it does commute with étale base change.

Remark 2. Néron models can be defined more in general for abelian varieties
over K and even more in general for schemes. Theorem 1 is actually valid
also for abelian varieties. There are instead examples of very simple schemes
which do not admit Néron models:

• For the projective space P1
Q, the scheme P1

Z is not a Néron model, as
the automorphism of P1

Q given by ( 2 0
0 1 ) ∈ PGL2(Q) does not extend to

an automorphism of P1
Z in PGL2(Z). In fact, P1

Q does not have a Néron
model at all.
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• As A1
Q(Q) = Q 6= Z = A1

Z(Z), we see that A1
Z is not a Néron model of

A1
Q. In fact, A1

Q does not have a Néron model.

• In the same way Gm,Z is not a Néron model of Gm,Q. However, Gm,Q
does have a Néron model, but it is much more complicated.

Néron models of elliptic curves

Here we will show how to construct a Néron model for a certain elliptic curve.
Since we are going to do geometry, we will fix R to be the ring of power series
in one variable C[[t]], which is a complete discrete valuation ring. Its fraction
field K is C((t)). In fact we could work with any discrete valuation ring R,
so if you are used to the number-theoretic setting, you may think of Zp and
Z(p), and their fraction fields Qp and Q. For concreteness we will work with
an example of elliptic curve with split multiplicative reduction.

Let E1 be the elliptic curve over K defined by y2 = x3 + x2 + t. The same
equation provides a Weierstrass model E1 over R, which has bad reduction.
Indeed, modulo t, we have a singular point. Let’s remove the singular point
(x = 0, y = 0, t = 0) from E1. As previously seen, we have a group structure
on the resulting model Esm1 . Moreover, the bijection

E1(K)→ E1(R)

does factor through Esm1 (R). Indeed, suppose by contradiction that we have
a solution with (x, y) with x, y ∈ R that reduces mod t to the point (0, 0),
that is x ≡ 0 mod t and y ≡ 0 mod t. In the equality y2 = x3 + x2 + t the
left-hand side is congruent to 0 mod t2 and the right-hand side is congruent
to t mod t2, which is a contradiction. In fact, it turns out that Esm1 is the
Néron model of E1.

Let E be the elliptic curve over K defined by y2 = x3 + x2 + t2. The same
equation gives its model E over R. The valuative criterion for properness tells
us that E(R) = E(K). We can interpret E as a family of curves: for every
value of the parameter t we obtain a curve. For values of t different from
zero, we obtain an elliptic curve; for t = 0 we obtain a singular curve with a
node P (with coordinates x = 0, y = 0, t = 0). The ring R = C[[t]] should
be thought of as the ring of regular functions of a small neighbourhood of
the origin in A1

C; we can picture E as a surface with a map π : E → U ; the
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curver E over K corresponds to the fibre over {t 6= 0}. The fibre over t = 0
is the reduction of E mod t, which is singular. Our aim is to construct the
Neron model over U of the fibre E.

A first candidate for a Néron model could be the smooth locus Esm = E\{P}.
Let’s check whether we have E(K) = E(R) = Esm(R). Consider the R-valued
point s of E given by (x = 0, y = t). This reduces to the singular point mod
t. The point s can be interpreted as a section s : U → E going through P ,
so it does not lie in Esm. Hence in this case E(R) 6= Esm(R), and it follows
that Esm is not the Néron model of E.

Our next step is to introduce the procedure of blowing-up.

Definition 2. Let X be a scheme and Z ⊂ X a closed subscheme. The
blowing-up of X at Z is a proper morphism X̃ → X such that f−1(Z) is a
Cartier divisor in X and satisfying the universal property: every morphism
of schemes g : Y → X such that g−1(Z) is a Cartier divisor factors uniquely
via f .

Remark 3. When the closed subscheme blown-up consists of a point P , the
blowing-up X̃ → X looks as follows: the open X̃ \ f−1(P ) is mapped by f
isomorphically to X \ P . The subscheme f−1(P ) parametrizes all directions
tangent to P on X.

Now we perform the procedure of blowing-up to the singular point P = (x =
0, y = 0, t = 0) inside E to obtain a new model E ′ of E, with a map f : E ′ → E .
We have f−1(P ) ∼= P1

C. This preimage parametrizes all directions tangent to
P in E and it contains two non-smooth points where f−1(P ) meets the rest
of the fibre over t = 0. The lifting s′ of the section s to E ′ meets f−1(P ) at
the point corresponding to the direction with which s goes through P . As s
meets the special fibre transversally, the lifting s′ lies in the smooth locus of
E ′.

It turns out that E ′ satisfies E ′(R) = E ′sm(R); namely, no sections of E ′ go
through any of the two non-smooth points. Hence we do have the equality
E(K) = E ′(K) = E ′(R) = E ′sm(R) (the first equality coming from the fact
that blowing-up only alters the fibre over t = 0). It turns out that E ′sm
is indeed the Néron model of E. The reduction modulo t of E ′sm has two
components, both isomorphic to the multiplicative group Gm.

More in general, given a discrete valuation ring R with uniformizer t and
fraction field K and an elliptic curve E over a field K, we have different
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possibilities for the reduction modulo t of its Néron model over R. Denoting
such reduction by N0, there are four main cases:

• if E has good reduction, N0
∼= E0 where E is the minimal Weierstrass

model of E over R. This is an elliptic curve over R/tR;

• if E has split multiplicative reduction, N0
∼= Gm × Z/nZ for some

n ≥ 0;

• if E has non-split multiplicative reduction, N0 becomes isomorphic to
Gm × Z/nZ after a quadratic extension of the base field K → K ′.
Looking at the action of Galois we see that N0 is the disjoint union of
copies of Gm,K′ and of some non-split tori;

• if E has additive reduction, N0
∼= A1 × Φ where Φ is a group of order

at most 4.

Remark 4. In general, the construction of the Néron model of an elliptic
curve goes via the so-called minimal regular model, which can be obtained
from any model after a series of blow-ups and blow-downs. The smooth locus
of the minimal regular model is the Néron model.

Other applications

Néron models are used in work related to Mazur’s theorem for elliptic curves,
the Birch-Swinnerton-Dyer conjecture, the theory of heights in diophantine
geometry, and in the comparison theorem, relating Néron models to jacobians
of curves.

6


