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1 Introduction

Let E be an elliptic curve defined over Q. Then a famous theorem proved by Mordell in 1922
asserts the abelian group of rational points E(Q) of E is finitely generated, i.e., it is of the shape

E(Q) ∼= T × Zr,
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where T is the finite torsion subgroup and the integer r is called the (algebraic) rank of E,
or rk(E). Even though it is known exactly which finite groups T can occur as the torsion
subgroup (Mazur’s theorem), less is known about the rank. It is conjectured, but not proved,
that the rank is 0 for 50% of elliptic curves and 1 for another 50% of elliptic curves and greater
than 1 for infinitely many but 0% of elliptic curves:

lim
X→∞

#{E | H(E) ≤ X and rk(E) = r}
#{E | H(E) ≤ X}

=

{
1
2

if r ∈ {0, 1}
0 else

,

where H(E) = max(4|A|3, 27B2) is the height of the elliptic curve E : y2 = x3+Ax+B written in
minimal Weierstraß form. There is no consensus on whether there exist a uniform bound for the
rank of all elliptic curves over Q. An elliptic curve with rank at least 29 has been found in 2024,
breaking the previous record of 28 from 2006. It would actually be very hard to prove that this
elliptic curve has rank exactly 29; techniques (descent) to prove such things might be discussed
later in this course.

On the other hand, changing the equations of E if needed, we can assume that A and B are
integers and minimal, and we can reduce the equation modulo p to obtain a curve Ep over Fp.
For all but finitely of the primes p, the curve Ep will also be a (smooth) elliptic curve, and E is
said to have good reduction at p. For the other primes, E has either multiplicative reduction if Ep

has a node, or additive reduction if E has a cusp. Moreover, the multiplicative reduction is called
split if the tangent directions of the curve at the node are rational, and non-split otherwise.

Hasse’s theorem states that
|#Ep(Fp)− (p+ 1)| ≤ 2

√
p

for all primes p of good reduction. We define ap = p+ 1−#Ep(Fp) and

Lp(T ) =


1− apT + pT 2 if p is a prime of good reduction,

1− T if p is a prime of split multiplicative reduction,

1 + T if p is a prime of non-split multiplicative reduction,

1 if p is a prime of additive reduction.

We then define the L-function of E as

L(E, s) =
∏
p

Lp(p
−s).

The function L(E, s) extends1 to an analytic function C → C and it the order of the vanishing
at 1 is called the analytic rank of E, or rkan(E).

Conjecture 1.1 (Birch–Swinnerton-Dyer).

rk(E) = rkan(E)

The conjecture does not only predict the order of vanishing of the L-function at 0, but it also
predicts the leading coefficient of the Taylor series at s = 1. The version below is the general
version for abelian varieties A over a number field K.

1This is actually very non-trivial to prove and follows from the modularity theorem.
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Conjecture 1.2 (BSD over Q, [HiSi00, Conj. F.4.1.6, p. 462]). Let A/Q be an abelian variety
of dimension d and algebraic rank r. Let L(A, s) be its L-function, A∨ its dual, RA its regula-
tor, X(A) its Tate-Shafarevich group and PA its period. For each prime p, let cp be the Tamagawa
number of A at p. Then L(A, s) has a zero of order r at s = 1 and

lim
s→1

(s− 1)−rL(A, s) =
PARA · |X(A)| ·

∏
p cp

|A(Q)tors| · |A∨(Q)tors|
. (1.0.1)

In this course, we will study the different invariants occurring in the formula, approaches to
compute them, and their relation to other important subjects in arithmetic geometry. Sometimes
we will focus on the case when A is the Jacobian J of a curve C.

2 Abelian varieties

The topic of abelian varieties is so vast that one can fill a whole course with it. I will try to
highlight some of the things we will need about abelian varieties and refer you to the literature
for the full theory. A good source is the unpublished book [EMvdG].

Definition 2.1 (abelian variety). An abelian variety over a field k is a proper/complete variety A
over k that also carries a group structure. That is, there is a multiplication m : A × A → A, an
identity element e : {⋆} → A and an inverse i : A → A satisfying the usual group axioms.

Fact 2.2. The group structure on an abelian variety is automatically commutative. The proof is
omitted.

Example 2.3 ([EMvdG, Example 1.10]). Let C be a (hyperelliptic) curve of genus 2 over k.
Then C has a hyperelliptic involution i : C → C. Consider the surface

C(2) := (C × C)/ι,

where ι : C × C → C × C swaps the two coordinates. The antidiagonal

∆− := {(P, i(P )) : P ∈ C}/ι ⊂ C(2)

turns out to be a curve of genus 0 with self-intersection −1 and by the theory of algebraic
surfaces there exists a contraction/blow-down C(2) → J which contracts ∆− to a point and is an
isomorphism outside of ∆−.

On the other hand, it is known for the genus 2 curve C that the divisor P+i(P ) is in the canonical
divisor class for any P ∈ C. This can be used to construct a map

J(k) → Cl0(C) : (P,Q) 7→ [P +Q−KC ],

where Cl0(C) is the the group of divisors on C of degree 0 modulo principal divisors. It follows
from the Riemann-Roch theorem that this map is a bijection, and we can use this bijection to
supply J with a group structure and therefore the structure of an abelian variety.

The abelian variety J is the Jacobian of C.

Remark 2.4. More generally, for a curve C of genus g, the Jacobian J of C, representing the
group Pic0(C) line bundles of degree 0 on C, is an abelian variety, and if C has a k-rational point,
then J is birational to C(g).
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Definition 2.5 (dual abelian variety). For an abelian variety A the dual abelian variety A∨ is the
identity component Pic0(A) of the variety Pic(A) representing the group of isomorphism classes
of line bundles on A.

In general, the dual abelian variety A∨ is isogenous to A, i.e. there is a surjective map A → A∨

with finite kernel. For Jacobians the situation is better.

Proposition 2.6. Let J be the Jacobian of a curve over k. Then J∨ is isormorphic to J .

Sketch of proof. Reduce to the case that there is a k-rational point P of C. Then the image of
the map

C(g−1) → C(g) ∼ J : (P1, . . . , Pg−1) 7→ (P1, . . . , Pg−1, P )

gives a divisor Θ ⊂ J . Then the map

φΘ : J → J∨ : x 7→ t∗xΘ⊗Θ−1,

where tx : J → J is the translation-by-x map, turns out to be an isomorphism.17:31 Details can
be found in [EMvdG, Chapter 14]

Corollary 2.7. If A is the Jacobian of a curve, then the factors |A(Q)tors| and |A∨(Q)tors| in the
BSD formula are equal.

Definition 2.8 (Poincaré bundle). The line bundle on A × A∨ corresponding to the identity
map A∨ → A∨ is called the Poincaré bundle P .

For those not aware what this means, you can think like this. Every point x ∈ A∨ corresponds
to a line bundle L on A. If you restrict P to A×{x}, you get the line bundle L. So the Poincaré
bundle is some way to glue all the line bundles on A into a large line bundle.

Remark 2.9. The Poincaré bundle can also be used to show that A∨∨ ∼= A.

3 Models of curves and abelian varieties

The book [Liu02] is a good place to read more about the topic.

Let K be a global or local field, e.g. a number field, or a finite extension of the field Qp of p-adics.
Let p be a prime of the ring of integers O of K and let Op be the localisation of O at p.

The following definition is for people who are familiar with the language of schemes.

Definition 3.1 (model of a curve). Let C be a curve over K. Then a model of C over Op is
a normal, proper, flat Spec(Op)-scheme C, such that all fibres are pure of dimension 1, together
with an isomorphism between the generic fibre Cη and the curve C.

For those not familiar with this language follows a sketch of what this means. Suppose we start
with a curve over Q and p is a prime. Then to get a model, we need to make sure that the
following holds.2

• The coefficients of the defining equations of the curve do not have ps in the denominators.

2These properties are not a formally correct definition, but rather indicate the kind of properties we need.
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• When you reduce the equation modulo p, you get a curve. This curve can have isolated
singularities, but cannot have a whole component that is singular (e.g., y2 = p ·x would not
be allowed).

• If you take a point in C(Q), then it can be reduced modulo p to a unique point in C(Fp)
(also for extensions of Q).

3.1 Regular models

Definition 3.2 (regular points/scheme). Let X be a scheme. Then a point p ∈ X is called
regular if the maximal ideal mp ⊂ OX,p can be generated by dim(OX,p) elements, or equivalently
when the vector space mp/m

2
p has dimension dim(OX,p).

The scheme X is said to be regular is it is regular at every point.

Fact 3.3. Under some technical conditions, which are satisfied in the case of models of curves,
the non-regular locus is a closed subset of X.

Example 3.4. Consider the model C : y2 = x5 + x2 + p2 over Z(p). The point P = (0, 0) in the
special fibre CFp corresponds to the maximal ideal mP = (x, y, p) in the local ring(

Z(p)[x, y]/(y
2 − x5 − x2 − p2)

)
(x,y,p)

.

The ideal mP cannot be generated by 2 element. The reason is that the elements x, y, and p are
linearly independent in mP/m

2
P , because all the terms in the equation lie in m2

P . Therefore C is
not regular at P .

Figure 1: An illustration of a blow up, picture by Hauser

For some of the BSD-invariants of Jac(C), we need to have a regular model of C. Luckily, such
models always exist and can be obtained by repeatedly blowing up non-regular points.
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Example 3.5. In the set-up of Example 3.4, we will blow up C at the point P . We introduce
new projective coordinates U, V, and T and satisyfing the relations

Uy = V x, Up = Tx, V p = Ty.

This blow up has three charts. For the first chart “U = 1”, we get the relations y = vx, and p = tx,
where v = V

X
and t = T

X
. The equation of the curves changes into

x2v2 − x5 − x2 − x2t2 = 0, p = tx.

We will divide by x2, to remove the exceptional locus of the blow up and obtain

v2 − x3 − 1− t2 = 0, p = tx.

In the special fibre of this chart, we already see two components: they are given by t = 0 and x = 0,
respectively. The first component is a smooth curve of genus 1, and the second component is a
smooth curve of genus 0. In this chart, the components intersect at (v, t, x) = (±1, 0, 0).

Note that compared to blow-ups of varieties over fields, the number of variables is increasing, as
we cannot “replace all p by tx”.

Theorem 3.6 (Lipman). A regular model is obtained after finitely many blow-ups.

Remark 3.7. There are other ways to construct regular models of curves. For example, for
hyperelliptic curves cluster pictures can be used, see [HyperUser], and for some plane curves, see
[DokT11]. These methods, although way more conceptual and pleasant to use, do not work for
all curves.

3.2 (Semi-)stable models

Definition 3.8 ((semi-)stable curve). A curve C is said to be (semi-)stable of genus g ≥ 2 if

• C is geometrically reduced and geometrically connected;

• all singularities of C are nodes / ordinary double points;

• each component of geometric genus 0 meets the other components in at least (two) three
points;

• dim(H1(OC)) = g.

A model C of a smooth curve C of genus at least 2 over K is said to be (semi-)stable if its special
fibre if semi-stable.

Not every smooth curve has a (semi-)stable model, but this is true after a finite extension.

Theorem 3.9 (Deligne-Mumford, (semi)-stable reduction theorem). There exists a finite exten-
sion L of K and an extension q of the prime p such that the base change CL has a (semi-)stable
model over OL,q.
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3.3 Néron models

A good source to learn more about all the technicalities around Néron models is the book [BLR90].

Let A be an abelian variety over K. There does not always exist a model A/OK such that the
special fibre AFp is also an abelian variety, e.g. take an elliptic curve with bad reduction. The
Néron model is in some sense the closest you can get without losing the group structure.

Definition 3.10 (Néron model). A Néron model of A at p is a smooth separated OK,p-scheme A
that has the following Néron mapping property: for any smooth separated OK,p-scheme X, any
morphism XK → A on the generic fibre extends uniquely to a morphism X → A over OK,p.

As a consequence of the definition of a Néron model, the group structure on A given by the
multiplication map m : A×A → A, the identity map e : {⋆} → A and the inverse map i : A → A,
extends to the Néron model A, giving it a group structure. Another consequence of the defintition
is that the Néron model is unique, if it exists.

Theorem 3.11 (Néron). Every abelian variety has a Néron model.

Néron models are typically not proper, as the Néron mapping property is weaker than the valuative
criterion for properness. It is does follow from the definition, however, that there is a reduction
map on rational points A(K) → A(OK,p).

Example 3.12. Let E be an elliptic curve and E its minimal regular model (i.e. a regular model
on which no components can be contracted). Then the smooth locus of E is a Néron model of E.
We consider four cases:

• If E has good reduction, then EFp is the reduction of E, which is an elliptic curve.

• If E has split multiplicative reduction, then EFp is a “circle of P1s”, and the special fibre of
the Néron model is of the shape Gm × Z/nZ for some integer n.

• If E has non-split multiplicative reduction, then it is split multiplicative after an extension.
The special fibre of the Néron model consists of copies of Gm,Fp2

that are permuted by Galois
and non-split tori. Here Fp2 denotes the quadratic extension field of Fp.

• In the case of additive reduction, the special fibre Néron model is of the shape Ga × Φ,
where Φ is a finite group of order at most 4.

Fact 3.13. The Néron model is not stable under base change! Indeed, if an elliptic curve has
additive reduction, we know that it will obtain good or multiplicative reduction over some finite
extension, so the Néron model must change.

In the case of a curve C over K and its Jacobian J , the Néron model J is related to regular or
semi-stable models C of C.

Theorem 3.14. Let C and J be as above. Assume (in the case of a regular model), that the
greatest common divisor of the multiplicities of the irreducible components in the special fibre is
equal to 1. Then the Picard scheme Pic0C/OK,p

coincides with the identity component J 0 of J .
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4 Period

4.1 For abelian varieties

Let A be an abelian variety of dimension g over a number field K, and let σ : K ↪→ C be an
embedding into the complex numbers. Then

Aσ := A×σ C
as complex manifold∼= Cg/Λ

for some lattice Λ.

The periods of Aσ, i.e. the generators of the lattice Λ, can be found by integrating a basis of
differentials ω = (ω1, . . . , ωg) of Ω1

A(A) inside Ω1
Aσ
(Aσ) along a set of generators (γ1, . . . , γ2g) of

the homology group H1(Aσ,Z):

Λ ∼ Z


∫
γ1
ω1

...∫
γ1
ωg

⊕ · · · ⊕ Z


∫
γ2g

ω1

...∫
γ2g

ωg

 . (4.1.1)

Note that the lattice that you get this way depends on the choice of the basis ω of Ω1
A(A). By

changing the basis, one changes the C-basis of the vector space Cg.

We first define the complex period.

Definition 4.1 (local complex period). Suppose that σ is a complex place, i.e. that σ does not
map K into R. Then the local period of A at v with respect to ω is

ΩA,σ,ω =

∣∣∣∣∣det
(∫

γi

ωj,

∫
γi

ωj

)i=2g,j=g

i,j=1

∣∣∣∣∣ .
In the real case, the real period measure the size of the lattice Λ∩Rg. Below there are two examples
of lattices corresponding to elliptic curves. In the picture, complex conjugation corresponds to
reflection through the central horizontal line. The other dotted line in the right hand picture
represents the second real component. The real period measures the distance between two nodes
on the dotted line (up to a factor 2).

Figure 2: Examples of lattices in C with one (left) and two (right) real components.
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Definition 4.2 (local real period). Suppose that σ : K ↪→ R is a real place. Let (γ′
1, . . . , γ

′
g) be

a basis of H1(Aσ(C),Z)Gal(C/R) and let mσ be the number of connected components of Aσ(R).
Then the local period of A at v with respect to ω is

ΩA,σ,ω = mv ·

∣∣∣∣∣∣det
(∫

γ′
i

ωj

)g

i,j=1

∣∣∣∣∣∣ .
Note that the product

ΩA,ω :=
∏
σ

ΩA,σ,ω

still depends on the choice of ω. To resolve this problem and to get a well-defined quantity, we
let A/OK be a Néron model of A over OK .

Definition 4.3 (period). Suppose ω is an OK-basis of the module Ω1
A/OK

(A) of global relative
differentials on A. Then the period of A is defined to be ΩA,ω as above.

Remark 4.4. The sheaf of relative differentials Ω1
A/OK

, as defined in [Liu02, Sect. 6.1], is a sheaf

that ‘glues’ the usual sheaves of differentials Ω1
A/K on the generic fibre and Ω1

Ap/Fp
on the special

fibres of A.

The OK-module Ω1
A/OK

(A) does not need to be a free module (c.f. a non-principal ideal inside OK

when K has class number greater than 1). The module is only guaranteed to be locally free, and
Definition 4.3 can be fixed by taking any ω and measuring how far ωp is from being a basis
of Ω1

Ap/Fp
(Ap), see also [vB18, Subsect. 1.3.4].

4.2 For Jacobians

For a curve C over a number field K, it is also possible to obtain the periods of its Jacobian J
directly from the curve. Let ω = (ω1, . . . , ωg) be a basis of differentials of Ω1

C(C). For any
embedding σ : K ↪→ C, we can consider these differentials as elements of Ω1

Cσ
(Cσ) and integrate

them along a set of generators (γ1, . . . , γ2g) of the homology H1(Cσ,Z) and create a lattice as in
Equation (4.1.1).

We will now describe which differentials correspond to those in Ω1
J /OK

(J ). For this purpose, we

introduce the canonical sheaf. The following definitions can also be found in [Liu02, Sect. 6.4].

Definition 4.5 (determinant). Let X be a scheme, and let F be a locally free OX-module of
rank r. Then we define detF to be the line bundle ∧rF , i.e. on any affine open U ⊂ X we
let (detF)(U) = ∧rM , where M is the OX(U)-module such that F|U ∼= M̃ .

The canonical sheaf as defined below is a generalisation of the line bundle detΩ1
X/T for smooth

schemes X over T .

Definition 4.6 (canonical sheaf). Let Y/T be a quasi-projective locally noetherian scheme that is
a local complete intersection (e.g. Y is a semi-stable or regular model of a curve over T = Spec(OK)).
Let i : Y → Z be an immersion into a smooth scheme Z/T (e.g. projective space). Then the
canonical sheaf of Y/T is the OY -module

ωY/T := det(i∗(I/I2))∨ ⊗OT
i∗(detΩ1

Z/T ),

where I is the sheaf of ideals defining Y in an open Z ′ ⊂ Z containing Y as closed subset.
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Remark 4.7. This is independent of the choice of Z and i, see [Liu02, Sect. 6.4]. Moreover, the
canonical sheaf is stable under base change, see [Liu02, Thm. 6.4.9], and for a smooth Z/T , it
coincides with detΩ1

Z , see [Liu02, Cor. 6.4.13].

To get some idea what this canonical sheaf is, we consider the case of a semi-stable curve.

Theorem 4.8 ([Ols16, Prop. 13.2.9]). Let C be a semi-stable curve over a field k and let π : C̃ → C
the normalisation. Let D =

∑
y∈π−1(Csing)

[y] be the divisor on C ′ consisting of the points that need

to be glued on C ′ to obtain C. Then there is an exact sequence

0 → ωC/k → π∗Ω
1
C̃
(D) →

⊕
P∈Csing

k(P ).

In other words, the sections of ωC/k correspond to differentials on C̃ that are allowed to have
simple poles at the points in D such that for any P ∈ Csing the sum of the residues at the poles
corresponding to the two points in π−1(P ) is zero.

Example 4.9. Take a “nodal elliptic curve” C, i.e. glue C̃ = P1 at the points 0 and ∞. On C̃,
we have Ω1

C̃
([0] + [∞]) ∼= OC̃(2 − 2) ∼= OC̃ . The differential 1

x
dx has simple poles at 0 and ∞.

The residue at 0 is 1, and writing the differential as −x d 1
x
, we see that the residue at ∞ is −1.

Therefore, as their sum is zero3, the differential gives rise to a global section of ωC/k.

We turn back to the problem of finding the correct differentials for the period.

Lemma 4.10 ([vB18, Lem. 1.3.5]). Let C be a regular model4 of C over OK,p, and let J be a Néron
model over OK,p of the Jacobian of C. Then there is an isomorphism Ω1

J /OK,p
(J ) ∼= ωC/OK,p

(C).

Note that as the canonical sheaf is stable under base change, we have

ωC/OK,p
(C)⊗OK,p

K ∼= ωC/K(C) ∼= Ω1
C(C).

So we now see that the basis ω of Ω1
C(C) that we want to pick in order to find the period of J ,

is one that corresponds to a basis of ωC/OK,p
(C).

4.3 Periods and endomorphisms

Any map φ : A → B from an abelian variety to another abelian variety such that φ(0A) = 0B, is
automatically also an homomorphism of group varieties, i.e. φ respects the group structure.

Definition 4.11 (isogeny/simple AV/endomorphism algebra). A morphism φ : A → B is called
an isogeny if two of the three following properties hold:

• φ is surjective;

• dim(A) = dim(B);

• ker(φ) is finite.

3The sum of the residues of such a differential is always 0, so in this case it was not necessary to check that. It
does become non-trivial when there are more points to glue.

4For this theorem, it would actually be enough to consider a model with at most rational singularities.
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The abelian varieties A and B are called isogenous if such a φ exists, and we write A ∼ B. An
abelian variety A is called simple if A ∼ B×C can only hold if either B or C is zero-dimensional.

The set of endomorphisms End(A) is a ring with the composition of endomorphism as multipli-
cation, and the ring

End0(A) := End(A)⊗Z Q
is called the endomorphism algebra of A.

Note that it is possible for an abelian variety A over a field K to be simple, and for AK to not
be simple. For example, if L/K is a quadratic extension and B is abelian variety over L and Bσ

its conjugate, then B ×Bσ could be isogenous (over L) to a simple abelian variety over K.

Theorem 4.12 ([EMvdG, Corollary 12.7]). Let A be an abelian variety such that

A ∼ Be1
1 × · · · ×Ben

n

for some simple abelian varieties B1, . . . , Bn such that Bi ̸∼ Bj if i ̸= j. Then

End0(A) ∼= Me1(D1)× · · · ×Men(Dn),

where Di := End0(Bi) is a division algebra, and Mℓ(R) denotes the ring of ℓ × ℓ-matrices with
coefficients in R.

There is a more refined classification of the possibilities for the Di in the theorem above, which
is called the Albert classification. There are four possibilities:

• D is a totally real field (type I),

• D split/Hamiltonian quaternion algebra over a totally real field (type II/III),

• D is a central simple algebra over a CM field, i.e. a central simple algebra over a totally
imaginary quadratic extension of a totally real field (type IV).

In the case of the Jacobian J of a curve C, one can use correspondences to describe an endomor-
phism J → J .

Definition 4.13 (correspondence). For (reasonable) varieties X and Y , a correspondence be-
tween X and Y is a closed subset R of X × Y . For convenience, we will assume that R does not
contain subsets of the form {x} × Y or X × {y} for any x ∈ X or y ∈ Y .

Suppose you have a divisor/correspondence R ⊂ C × C, then this can describe an endomor-
phism J → J as follows. LetD ∈ J = Pic0(C) be some divisor class

∑
i ni[Pi] on C. Then {Pi}×C

intersects R in finitely many points (Pi, Qij), with multiplicity if needed, and we can define a
map J → J by

D =
∑
i

ni[Pi] 7→
∑
i,j

niQij.

The periods of A can be used to (heuristically) determine the endomorphism ring/algebra of A.
Indeed, if we arrange the generators of the lattice Λ in a g× 2g-matrix Π with entries in C, then
an endomorphism A → A gives rise to an equality

MΠ = ΠR,

where M is a g × g-matrix over C, describing a homothety of the lattice, and R is a 2g × 2g-
matrix over Z, describing the map of lattices. There are commonly used algorithms that solve this
problem numerically in order to determine End(A), see [CMSV19]. It is possible to get certified
output, for example in the form of a correspondence of a curve.
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5 Regulator

5.1 Heights on varieties

In this section, we will define the regulator of an abelian variety over a number field. First, we
need to discuss some generalities on heights. This is explained well in [Lang83] and [Nér65] (if
you don’t mind French).

Definition 5.1 (standard height). Let K be a number field. The standard height on Pn
K is defined

by

hPn
K
: Pn

K(K) → R : (x0 : · · · : xn) 7→
1

[L : K]

∑
v∈ML

[Lv : Qv] log max
i=0,...,n

{|xi|v},

where L/K is a finite extension containing x0, . . . , xn, and ML is the set of (finite and infinite)
places5 of L, and where for all finite places v over the prime p ∈ Z the absolute value | · |v is
normalised such that |p|v = p−1.

Example 5.2. Over Q, for a rational point (x0 : · · · : xn) with x0, . . . , xn ∈ Z coprime, we have

hPn
Q
(x0 : · · · : xn) = logmax(|x0|, . . . , |xn|).

For the rest of this section, let X/K be smooth and projective over a number field K.

Definition 5.3 (näıve height). Let L be a very ample line bundle on X and let B be an ordered
basis of its global sections, giving rise to an immersion φ : X → Pn

K . Then we can define the näıve
global height of X at L with respect to B as

hnaive
X,L,B : X(K) → R : P 7→ hPn

K
(φ(P )).

We will now try to extend this definition to work for all line bundles in A. For this purpose we
will define the following space.

Definition 5.4 (height function space). Let Map(X(K),R) be the R-vector space of all functions
from X(K) to R. Let Map0(X(K),R) be the subspace of these functions that are bounded, i.e.
the f : X(K) → R for which there exists a B ∈ R such that |f(P )| < B for all P ∈ X(K). Then
the height function space of X is

H(X) := Map(X(K),R) /Map0(X(K),R).

Now we can extend the definition of the global height of X to also work at line bundles L, which
are not necessarily very ample.

Lemma 5.5 ([Lang83, Thm. 5.1, sect. 4.5, p. 93]). There exists a function

hA,· : Pic(A) → H(X) : [L] 7→ hX,[L],

having the following properties:

– for [L1], [L2] ∈ Pic(X) we have hX,[L1] + hX,[L2] = hX,[L1⊗L2];

– if L is a very ample line bundle and B an ordered basis of its global sections then hX,[L] is
the class of hnaive

X,L,B.

Moreover, this construction is functorial in the following sense. If f : X → Y is a morphism of
smooth projective schemes over K and L is a line bundle on Y , then hX,[f∗L] = hY,[L] ◦ f .

5Finite place are prime ideals of OL and infinite places are embeddings of L into R or C. Places correspond to
the non-trivial absolute values you can put on K.
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5.2 Canonical height on an abelian variety

In case of abelian varieties, for such height functions, there is a canonical representative in the
set Map(A(K),R). Just like for elliptic curves (for those who already heard of the height in that
situation), the height can be seen as a measure for how many digits you need to write down a
point.

Proposition 5.6 ([Nér65, Thm. 5, sect. II.14, p. 300]). Let L be a line bundle on an abelian
variety A over K. Then there exist functions ℓ, q : A(K) → R, that are linear and quadratic
(i.e. q(P + Q) − q(P ) − q(Q) is a bilinear form on A(K) × A(K)), respectively, such that ℓ + q
is in the class hA,[L].

Sketch of proof. Let (−1) : A → A be the multiplication by−1. LetM = (−1)∗L. Then [L]+[M]
is a so-called symmetric line bundle, and the limit

lim
N→∞

hnaive
X,[L]+[M](NP )

N2

exists, giving rise to the quadratic part q. On the other hand, [L]− [M] is anti-symmetric, and
in this case the limit

lim
N→∞

hnaive
X,[L]−[M](NP )

N

exists, giving rise to the linear part ℓ.

Remark 5.7. While the limit in the proof above, gives you a good way to think about the height,
this limit does not give a very fast way to compute the height in practice.

Definition 5.8 (canonical height). For a line bundle L on an abelian variety A with func-
tions ℓ, q : A(K) → R as above, we define the canonical height of A at L as

ĥA,L = ℓ+ q.

Fact 5.9. For an ample L, the set
⋃

[L:K]≤d{x ∈ A(L) : ĥA,L(x) ≤ B} is finite for any B and d

(Northcott property). Moreover, the only points of height 0 are torsion points.

The above definition of height depends on the choice of a line bundle L. To get an even more
canonical notion of height, we consider A× A∨.

Definition 5.10 (Néron-Tate height). Let P be the Poincaré bundle on A × A∨. Then the
Néron-Tate height on A is defined as

hA×A∨,NT = ĥA×A∨,P : A(K)× A∨(K) → R.

Now we can define the regulator of A.

Definition 5.11 (regulator). Let P1, . . . , Prk(A) be a basis of the free part of A(Q), Moreover,
let Q1, . . . , Qrk(A) be a basis of the free part of A∨(Q). Then the regulator of A is defined as∣∣∣∣∣∣∣det

 hA×A∨,NT(P1, Q1) · · · hA×A∨,NT(Prk(A), Q1)
...

. . .
...

hA×A∨,NT(P1, Qrk(A)) · · · hA×A∨,NT(Prk(A), Qrk(A))


∣∣∣∣∣∣∣ .
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5.3 Canonical height for Jacobians using Arakelov intersection theory

Let J be the Jacobian of a curve C over a number field K. Then as J∨ ∼= J , the height pairing
becomes a function J(K)× J(K) → R. Instead of trying to compute on J directly, it is actually
possible to express the heights using arithmetic and geometry information attached to the curve C.

Theorem 5.12 (Faltings-Hriljac). Let D,E be degree 0 divisors on C with disjoint support. Then
the Néron-Tate height can be expressed as a sum

−
∑
v∈MK

⟨D,E⟩v,

where MK is the set of finite and infinite places of K, and ⟨·, ·⟩v is a local intersection pairing,
which we will roughly after this.

Let us now describe these local intersection pairings. We first consider the case of a finite place,
given by a prime ideal p ⊂ OK . Let C be a regular model of C over OK,p. Then C just behaves
like an algebraic surface over a field in the sense that you can do intersection theory on it.

Definition 5.13 (horizontal/vertical divisors). Let D ⊂ C be irreducible of codimension 1.
Then D is called vertical, if D is contained in the special fibre Cp, i.e. if D is an irreducible
component of Cp. If D is not vertical, then D is called horizontal, in which case D consists of a
point in the generic fibre Cη ∼= C together with the reduction modulo p of that point in Cp.

Divisors are called horizontal/vertical if their support consists of horizontal/vertical subschemes.

Definition 5.14 (intersection number). LetD1, D2 ⊂ C be irreducible and distinct. ThenD1∩D2

is finite, and for each point P ∈ D1 ∩D2, we can define the intersection multiplicity at P as

ιP (D1, D2) := lengthOC,P

(
OC,P

ID1,P + ID2,P

)
,

where ID1,P and ID2,P are ideals defining D1 and D2 respectively. We then define the intersection
number

ι(D1, D2) :=
∑

P∈D1∩D2

ιP (D1, D2) · log |kP |,

where kP is the (finite) field of definition of P . This function can be extended bilinearly to pairs
of divisors with disjoint support.

Remark 5.15. If you intersect two horizontal irreducibles corresponding to points P1, P2 ∈ C,
then you are essentially computing the highest power pi of p such that P1 and P2 are congruent
modulo pi. If you intersect a horizontal and a vertical irreducible, corresponding to a point P ∈ C
and a component D ⊂ Cp, you are determining whether the reduction of P lies on D.

Remark 5.16. There are a lot of subtleties with this intersection pairing. IfD is a vertical divisor,
and if we consider the whole special fibre Cp as a divisor, then we can extend the intersection
pairing by setting ι(D, Cp) = 0, and use this to determine ι(D,D). Note that this does not hold
for horizontal divisors, as ι(D, Cp) ̸= 0 in this case, unless D has degree 0 on C.

Now we can define the local pairing ⟨D,E⟩p.
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Definition 5.17. Let D and E be divisors on C of degree 0. Let D and E be the horizontal
divisors on C corresponding to D and E. We define

⟨D,E⟩p := ι
(
D + Φ(D), E + Φ(E)

)
,

where Φ(D) (and similarly Φ(E)) is a vertical divisor such that ι(Y,D+Φ(D)) = 0 for all vertical
divisors Y .6

For the infinite places v ofK, the pairing ⟨D,E⟩v can be defined using the Riemann theta function
corresponding to Cg/Λ. The details are omitted and can be found in [Lang88, vBHM20].

6 Tate-Shafarevich group

6.1 Torsors, twists and H1

In arithmetic geometry, there are often situations where two objects are not isomorphic but
become isomorphic after base changing to an algebraic closure. Examples of such objects are
twists and torsors of abelian varieties. This topic is also discussed in [Silv09, Chap. X].

Definition 6.1 (twist). Let A and B be abelian varieties over a field K. Then B is said to be a
twist of A if AK

∼= BK .

Definition 6.2 (torsor). Let A be an abelian variety over a field K, and let X be a variety over K
with an action of A on it, i.e. a map A × X → X, satisfying the usual properties. Then X is
called an A-torsor, or principal homogeneous space, if XK is isomorphic to AK , as a variety with
an action of AK .

An A-torsor X is called trivial if X ∼= A, or equivalently if X(K) ̸= ∅.

Example 6.3. Let C be the curve given by 3x3 + 4y3 + 5z3 = 0 in P2 over Q. This is a famous
example of a genus 1 curve without a rational point. The Jacobian E of C is an elliptic curve,
and E carries a natural action E × C → C. The curve C is an E-torsor under that action.

The set of twists or torsors, up to isomorphism over K, can be expressed as a cohomology set.
We will first state the theorem and then explain it more in the rest of the subsection.

Theorem 6.4. Let A be an abelian variety over a number field K. Let GK = Gal(K/K) be the
absolute Galois group of K. Then there are isomorphisms

{twists of A}/∼=K
∼= H1(GK ,Aut(AK)),

{A-torsors}/∼=K
∼= H1(GK , AK).

The pattern that you will see is that the group on the right is the automorphism group of the
object in question after base changing to K. Indeed, for AK considered as a variety with an
action of AK on it, the automorphisms consist of translations by points in AK .

There are other examples of this phenomenon. For example, line bundles, which become trivial
when you look at small enough open subsets, are classified by H1(X,Gm) or H

1(X,O∗
X). In this

6It is not a priori clear that this vertical divisor Φ(D) exists, see [Lang88, vBHM20].
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case, Gm is the automorphism group of a trivial line bundle. Another example is that of central
simple algebras, which can be classified using cohomology sets like H1(GK ,PGLn).

The general setup for H1(G,A) is that G is a group acting on a group A. In our case, G is the
absolute Galois group acting on the automorphisms over K by acting on the coefficients occurring
in the automorphisms.

The reason H1(G,A) exists, is because the functor A 7→ AG mapping the group to its invariance,
is not exact. If A is abelian, then there is a whole theory of homological algebra, which will give
cohomology sets Hn(G,A) with long exact sequences, et cetera. For this course, I will only give
a definition for H1(G,A) that also works for non-abelian A, and you will have to consult other
sources for more background on the general theory, e.g. [Silv09, App. B]. Note that H1(G,A) will
not be a group, but only a pointed set, unless A is abelian.

Definition 6.5. Let G be a group acting on another group A, we will denote this action by ga
for g ∈ G and a ∈ A. A cross morphism is a map f : G → A such that

f(g1g2) = f(g1) · g1f(g2), for all g1, g2 ∈ G.

Two cross morphisms f1 and f2 are called cohomologous if there is an a ∈ A such that

f2(g) = a−1 · f1(g) · ga, for all g ∈ G.

The cohomology set H1(G,A) is the set of cross morphisms modulo the equivalence of cohomolo-
gous cross morphisms.

Idea of proof of Theorem 6.4. Consider an A-torsor X over K (the situation of twists is analo-
gous). Let i : AK → XK be an isomorphism. For any σ ∈ GK , the composite map

AK

σi // XK
i−1
// AK ,

where σi is the isomorphism you get by applying σ to the coefficients of i, is translation by an
element aσ. You can now check that the map σ 7→ aσ is a cross morphism.

The other way around, if you are given a cross morphism f , then this can be used to construct
a torsor. The idea is to consider the variety A over K as a variety over K with the action
of Gal(K/K) on it, and change this action action of the Galois group. More specifically, any
element σ ∈ Gal(K/K) gives rise to a map σA : AK → AK (over K, not over K). This action of
Galois can be twisted by replacing σA with f(σ) ◦ σA. Then one can use descent on AK with this
new Galois action to get another variety X over K, the A-torsor.

We will demonstrate the construction for twists by the means of an example.

Example 6.6. Let E : y2 = f(x) be an elliptic curve over Q. Let

f : Gal
(
Q/Q

)
→ Gal

(
Q
(√

d
)
/Q
)
→ Aut

(
EQ
)

be the cross morphism that maps the non-trivial element of Gal(Q(
√
d)/Q) to the automor-

phism −1: (x, y) 7→ (x,−y), and the identity to the identity. Then the twisted Galois action
on E is given by (

a+ b
√
d
)
· x 7→

(
a− b

√
d
)
· x,
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(
a+ b

√
d
)
· y 7→

(
−a+ b

√
d
)
· y.

The ring of invariants under this action is generated by x′ = x and y′ =
√
d · y, and we see that

they will satisfy the relation y′2 = d · f(x′). In other words, we get the quadratic twist.

Remark 6.7. Note that the quadratic twist could be isomorpic to E itself. This may happen
if Aut(EQ) has more than 2 elements, and the cross morphism will actually become homologous
to the cross morphism mapping everything to the identity.

6.2 Local-global principle for torsors

Now we are ready to define the Tate-Shafarevich group.

Definition 6.8 (Tate-Shafarevich group). Let A be an abelian variety over a number field K.
Let MK be the set of places of K. Then the Tate-Shafarevich group of A is the group

X(A/K) :=
⋂

v∈MK

ker
(
H1(GK , AK) → H1(GKv , AKv

)
)
,

where Kv is the completion of K at v, and ker(· · · ) is the set of elements mapping to the trivial
torsor.

In other words, X(A/K) is the set of torsors X of A such that X has a point over Kv for all
places v, up to isomorphism over K. These are torsors that have point everywhere locally, but
not necessarily globally. You could say that X(A/K) measures the failure of the local-global
principle for torsors of abelian varieties.

Example 6.9. The torsor from Example 6.3 corresponds to a non-trivial element of the Tate-
Shafarevich group of the Jacobian E occurring in that example. This element turns out to have
order 3.

Remark 6.10. While it is conjectured that X(A/K) is finite, this is not proved. It is known
that X(A/K)[n] is finite, but that doesn’t exclude the possibility of X(A/K) containing some
infinite divisible group like Q.

If X(A/K)div is the maximal divisible subgroup of X(A/K), then it has been believed for a
long time that |X(A/K)/X(A/K)div| would be a square. The reason for that is that there is a
pairing, called the Cassels-Tate pairing

⟨·, ·⟩ : X(A/K)×X(A∨/K) → Q/Z,

and this pairing was believed to be alternating after mapping X(A/K) to X(A∨/K) through
some polarisation, i.e. ⟨x, x⟩ = 0. If the polarisation is principal, the pairing can be shown to be
antisymmetric, i.e. ⟨x, y⟩ = −⟨y, x⟩, which is a weaker property. It turns out that the pairing is
not alternating in general and even for Jacobians J the order |X(J/K)/X(J/K)div| can also be
two times a square, see also [PoSt99].
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6.3 Descent and Selmer groups

6.3.1 Setup

This subsection gives an introduction to descent and Selmer groups. For a more complete picture
of the theory, you could read [CFOSS08] or [Silv09, Chap. X]. Let us start with the elliptic curve

E : y2 = x(x− a)(x− b) over Q.

For a rational point (x, y) ∈ E(Q), the numbers x, x − a, and x − b do not need to be squares,
but their product should be. Let us do a substitution

x = d1x
2
1, x− a = d2x

2
2, x− b = d1d2x

2
3, y = d1d2d3x1x2x3.

This naturally leads to the curve

Cd1,d2 : d1x
2
1 = d2x

2
2 + a = d1d2x

2
3 + b.

There is a natural map

φd1,d2 : Cd1,d2 → E : (x1, x2, x3) 7→ (d1x
2
1, d1d2d3x1x2x3).

Any rational point on E(Q) must come from a rational point on Cd1,d2(Q) for some choice of d1
and d2. So suppose you want to find generators of the Mordell-Weil group E(Q), then it could
be useful to study rational points on Cd1,d2 .

6.3.2 Covers as twists

The cover φd1,d2 is unramified, and Aut(Cd1,d2/E) = Z/2Z× Z/2Z ∼= E[2], given by the maps

(x1, x2, x3) 7→ (±x1,±x2,±x3)

with an even number of plus signs. Note that different curves Cd1,d2 and Cd′1,d
′
2
become isomorphic

over Q: they are twists. In this case, the group Q∗/Q∗2 ×Q∗/Q∗2 classifies these twists. In light
of what we learned before, it would not be hard to believe the following more general statement.

Proposition 6.11. The E[2]-covers of E are classified by the group H1(GQ, E[2]).

Note that any point (x, y) ∈ E(Q) is the image of a rational point on some Cd1,d2 . Indeed, we
need d1 = x ∈ Q∗/Q∗2 and d2 = x− a ∈ Q∗/Q∗2. This gives a natural map

ρ : E(Q) → H1(GQ, E[2]) : (x, y) 7→ Cd1,d2 .

Remark 6.12. Another way to get this map is by taking the long exact sequence of group

cohomology for the exact sequence of algebraic groups 0 → E[2] → E
·2→ E → 0. Doing it this

way, you’ll see that ρ factors through E(Q)/2E(Q).
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6.3.3 Local-global principle again

If you want to know if Cd1,d2 has rational points, you might as well first consider if Cd1,d2 has
points everywhere locally, i.e. over every completion Qv of Q. It turns out that the curve Cd1,d2

only has points everywhere locally for finitely many of the possible values of d1 and d2.

We want to determine these d1 and d2. For our Cd1,d2 , it turns out that d1 and d2 are only allowed
to have prime factors that occur in 2ab(a− b) if we want Cd1,d2(Qv) ̸= ∅ for all places v. For the
general case, this motivates the following definition.

Definition 6.13 (Selmer group). Let A be an abelian variety over a number field K and let n
be an integer7. Then the n-Selmer group Seln(A) is the subgroup of those H1(K,A[n]) whose
restriction to H1(Kv, A[n]) lies in the image of the local map ρv : A(Kv) → H1(GKv , A[n]) for
every place v of K.

In other words, the Selmer groups classifies A[n]-covers of the abelian variety that have points
everwhere locally. As we know, having points everywhere locally is not a guarantee for having a
point globally. The failure is again measured by the Tate-Shafarevich group.

Lemma 6.14. There is an exact sequence

0 → A(K)/nA(K) → Seln(A) → X(A/K)[n] → 0.

Proof. The proof is omitted, but follows from an analysis of a bunch of long exact sequences.

Fact 6.15. The Selmer group is finite and, in principle, effectively computable. The idea is that
group H1(K,E[n]) can be embedded in R∗/R∗,n, where R is a product of fields over which the
points in E[n] are defined. The most difficult step in computing the Selmer group is the compu-
tation of the class and unit groups of these fields. Again, see [CFOSS08] for more background.

As a consequence of this fact, the Selmer group can be used to bound the rank of E andX(E/K)[n].
If you believe that X(E/K) is finite, then there must be an n for which the right term of the
sequence is 0, and you will actually find a sharp upper bound of the rank. On the other hand,
there is no unconditional algorithm known to compute the rank of an elliptic curve.

7 Tamagawa number

Let A be a Néron model over OK,p of an abelian variety A over a number field K at a prime p
of K. The special fibre Ap over the residue field kp does not need to be connected. The connected
component containing the identity element A0

p is a subgroup, and the quotient Φ := Ap/A0
p is

called the component group.

Definition 7.1 (Tamagawa number). The Tamagawa number of A at p is defined to be

cp := #Φ(kp).

Let Kp be the completion of K at p. For elliptic curves E with a minimal Weierstraß equation, the
Tamagawa number is sometimes also defined as #(E(Kp)/E(Kp)

0) where E(Kp)
0 is the subgroup

of points whose reduction is a smooth point (on the reduction of the minimal Weierstraß model).
The lemma below explains why this is the same.

7Instead of integers, it is also possible to use other endomorphisms of A, in the case End(A) ̸= Z.
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Lemma 7.2. There is an equality

cp = #
(
A(Kp)/A0(Kp)

)
.

Proof. Let R be the ring of integers in Kp. By the Néron mapping property A(Kp) = A(R).
This also induces a reduction map A(Kp) → A(R) → Ap(kp). This reduction map is surjective,
because A is smooth andKp is complete (Hensel’s lemma). Moreover, as A0 is open, the reduction
maps A0(Kp) into A0

p(kp), and the kernel of A(Kp) → Φ(kp) is A0(Kp).

Note that the Tamagawa number is 1 for all primes of good reduction. In particular, only finitely
many of the cp are not equal to 1.

Remark 7.3. There is a different notion of Tamagawa numbers for reductive algebraic groups.
While this notion shows similarity to the one for abelian varieties, they should not be considered
the same. In fact, historically, the Tamagawa numbers for elliptic curves have been called fudge
factors. The exact definition of these fudge factors was determined later, see for example [Tate75].

7.1 For Jacobians

In the case of a Jacobian J of a curve C over a number field K, the Tamagawa number cp can be
determined using intersection theory on regular model C over OK,p.

Let I be the set of geometrically irreducible components of the special fibre Ckp . Let L be an
unramified extension of K over, and let q be a prime of L extending p, such that all components
in I are defined over kq. We define the intersection of two such components D and E as

⟨D,E⟩ = ι(D,E)/ log(kq),

where ι is as in Def. 5.14, so that ⟨D,E⟩ ∈ Z. The component group of Φ can now be related to
the intersections on the regular model as follows.

Theorem 7.4 ([BoLi99, Thm. 1.1]). There is an exact sequence of Gal(kq/kp)-modules

0 → im(α) → ker(β) → Φ(kq) → 0,

where α : ZI → ZI is the linear map which maps a component D ∈ I to
∑

E∈I⟨D,E⟩ · E ∈ ZI ,
and β : ZI → Z is the linear map mapping a component D ∈ I to its multiplicity in Ckq.

Proof sketch. The Néron model J of J is almost equal to the subfunctor of PicC/Okq
consisting

of divisor classes of total degree 0. If you take a divisor D of total degree 0 and some compo-
nent E ∈ I, then ⟨D,E⟩ does not need to be 0, but the weighted sum of the ⟨D,E⟩ must be 0,
as Ckq has intersection number 0 with every other divisor of total degree 0. In other words, we get
a map Div0C/Okq

→ ker(β). Moreover, the principal divisors correspond exactly to those in im(α).

So we actually get a map J → ker(β)/im(α).

The identity component J 0
p corresponds to those line bundles that have degree 0 on each com-

ponent in I. So now we have a map Jp/J 0
p → ker(β)/im(α). One then needs to show that this

map is surjective, and respects the action of the Galois structure. This is all a bit technical and
can be found in [BoLi99, BLR90].
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8 L-function

8.1 Definitions

Let A be an abelian variety over a number field K of dimension g. Let G = Gal(K/K) be the
absolute Galois group of K. We first define the Tate module as follows.

Definition 8.1 (Tate module). For a prime ℓ, the Tate-ℓ-module is the G-module defined by

Tℓ(A) = lim
n∈Z>0

A[ℓn](K),

i.e., its elements are sequences (t1, t2, . . .) of ti ∈ A[ℓi](K) such that ℓ · ti = ti−1 for all i ≥ 2.

Because A[ℓn](K) ∼= (Z/ℓnZ)2g, there is an isomorphism Tℓ(A) ∼= Z2g
ℓ of groups. We define Vℓ to

be the G-module Tℓ(A)⊗Zℓ
Qℓ. The dual Hom(Vℓ(A),Qℓ) also has a G-module structure:

g · φ(−) = φ(g−1 · −), for φ ∈ Hom(Vℓ(A),Qℓ).

Let p be a prime of K coprime to ℓ and fix an extension q of p to K. Let Iq ⊂ G be the
inertia group, i.e. the subgroup of σ ∈ G fixing q and acting trivially on the residue field kq.
The Frobenius element of Gal(kq/kp) lifts to an element Frobq in G, which is only unique up to
elements in Iq.

Definition 8.2 (Euler factor). We define the Euler factor of A at p to be

Pp := det
(
1− Frobq · T | Hom(Vℓ(A),Qℓ)

Iv
)
∈ Qℓ[T ].

Remark 8.3. The coefficients of this polynomial turn out to lie in Z, and the polynomial does
not depend on the choice of q, ℓ or Frobq, as long as ℓ is coprime to p.

The L-function can now be defined in terms of these Euler factors.

Definition 8.4 (L-function). The L-function of A is defined by

L(A, s) =
∏
p

Pp

(
(#kp)

−s
)−1

.

A priori, one can show relatively easy that this gives rise to a holomorphic function on the
space {z ∈ C : Im(z) > 3

2
}. It is expected that it extends to a holomorphic function on C.

Conjecture 8.5. The L-function can be continued to an a holomorphic function C → C. More-
over, let

Λ(A, s) = Norm(N)s/2 ·
(
(2π)−s Γ(s)

)g·[K:Q] · |∆(K)|g·s · L(A, s),

where N is the conductor of A (to be defined later), Γ(s) is the usual Γ-function, and ∆(K) the
discriminant of K. Then we have

Γ(A, 2− s) = ε · Γ(A, s) for all s ∈ C

where ε ∈ {±1} is the root number of A, i.e. (−1)rk(A) mod 2.
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One could say that the (norm of the) conductor is the integer that makes the functional equation
work; this is what people sometimes call the analytic conductor. There is also an algebraic
definition of the conductor (and conjecturally this is the same).

Definition 8.6 (Conductor, [BrKr94]). Let A be an abelian variety over a number field K.
Let p be a prime of K and let ℓ be a prime of Z coprime to p. Consider Vℓ(A) with the action
of Gal(Kp/Kp). Then the tame conductor exponent of A at p is

ε(A, p) := 2g − dim
(
Vℓ(A)

I
)
,

where I is the inertia subgroup.

Moreover, if L = Kp(A[ℓ]), then the wild/Swan conductor exponent of A at p is

δ(A, p) :=
∞∑
i=1

|Gi|
|G0|

dim
(
A[ℓ]/A[ℓ]Gi

)
.

Here Gi ⊂ Gal(L/Kp) is the i-th ramification group

Gi := {σ ∈ Gal(L/Kp) : vL(σ(πL)− πL) ≥ i+ 1},

where πL is a uniformiser of L and vL is the discrete valuation on L.

The conductor exponent of A at p is defined as fp := ε(A, p) + δ(A, p), and the conductor of A is
then defined to be the ideal

∏
p p

fp .

Fact 8.7. If the residue characteristic p of p is greater than 2g + 1, then the wild conductor
exponent δ(A, p) is equal to 0.

Remark 8.8. It is also possible to define the Euler factors and the conductor using H1(AK ,Zℓ)
instead of Tℓ(A), as there is a duality between the two groups, see [EMvdG, Chap. 10].

8.2 For Jacobians

Let C be a curve over a number field K and let J be its Jacobian. Because H1(JK ,Qℓ) is
isomorphic to H1(CK ,Qℓ), the computation of the Euler factors can also be done on the curve.
Consider a prime p of good reduction and let Cp be the reduction. Then by the Néron-Ogg-
Shafarevich criterion, the action of inertia on H1(JK ,Qℓ) is trivial, and we need to compute the
characteristic polynomial of Frobenius. This essentially comes down to computing the numerator
of the zeta function

Z(Cp, T ) := exp

(
∞∑
n=1

#Cp(kp,n) ·
T n

n

)
,

where kp,n is the degree n extension field of the residue field kp. Because of the functional equation
that the zeta function satisfies, it is sufficient to count points in Cp(kp,n) for n = 1, . . . , g.

Remark 8.9. For elliptic curves, Schoof’s algorithm can be used to count points in runtime that
is polynomial in log(#kp). For higher genus curves, there is no practical algorithm that does this
in polynomial time. However, if you want to compute the Euler factors for all p ≤ N at the same
time, there are algorithms that can do that in average polynomial time, see for example [HaSu14].

For the bad primes, there have been several strategies:
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• try guessing the conductor exponents and Euler factors until you find a guess that satisfies
the functional equation of the L-function;

• compute the Euler factors on a regular model of C;

• compute the Euler factors on the (semi)stable reduction of C.

We will go into more detail on the last two approaches. A good place to read more about this
is [BoWe17].

Lemma 8.10 ([BoWe17, Prop. 2.8]). Suppose that C is a regular or (semi-)stable model of C
over OK,p. Suppose that the greatest common divisor of the multiplicities of the components in
the special fibre Ckp is 1. Then there is an isomorphism

H1(CK ,Qℓ)
IK ∼= H1(Ckp ,Qℓ).

It then turns out to be possible to determine the Euler factor by point counting on Ckp , as the
Euler factor is essentially the zeta function of Ckp .

As a regular model always exists without needing to extend the base field K, this method can
always be applied in this case. However, a regular model can be computationally expensive to
compute. There is also a way to use the stable reduction, even if C does not have stable reduction
over K.

Suppose that L/K is a Galois extension, such that C has stable reduction over L. Let q a prime
of L extending p, and let C be a stable model of C over OL,q. In [BoWe17, Thm. 2.4], it is proved
that

H1(CK ,Qℓ)
IK ∼= H1(Ckq ,Qℓ)

IK ∼= H1(Ckq/IK ,Qℓ).

The Euler factor can now be determined by counting points on Ckq /Gal(L/K). Moreover, the
tame part of the conductor is

2 · genus(C)− genusarith(Ckq/IK)− genusgeom(Ckq/IK).

For the wild part of the conductor, you also need to compute the genera of the curves Ckq/Gi,
where Gi ⊂ IK is the i-th ramification group, see also [BoWe17, Thm. 2.9].

9 What is known about BSD?

The most prominent result on the Birch and Swinnerton-Dyer conjecture is the statement that the
conjecture holds for elliptic curves of analytic rank 0 and 1. The proof, which is the accumulation
of work by Gross-Zagier, Kolyvagin, and others, uses modularity, Heegner points, and Euler
systems. While there is not enough time in the course to discuss these in full detail, I will make
an attempt to convey some of the ideas behind them.

There are also some other things known about the conjecture. For example, it is known that the
conjecture holds for an abelian variety A over a number field K, if and only if it holds for an K-
isogenous abelian variety, or in the case of a field extension K/L for the Weil restriction ResK/LA
of A. In certain cases, there are also things known about the parity (odd/even) of the rank of an
elliptic curve. Finally, the conjecture can be viewed as a special case of the Bloch-Kato conjecture.
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9.1 Modularity

Let N be an intgeer. There is an algebraic curve Y0(N) over Z[1/N ] whose points correspond to
pairs (E,φ : E → E ′) of an elliptic curve E together with an N -isogeny φ. Complex analytically
this corresponds to the quotient H/Γ0(N), where H is the upper half plane {im(z) > 0}, and

Γ0 =

{
M ∈ SL2(Z) : M ≡

(
⋆ ⋆
0 ⋆

)
mod N

}
.

This curve can be compactified into a projective curve X0(N) by also allowing “generalised elliptic
curves”, which are isomorphic to an n-gon of P1s.

Theorem 9.1 (modularity theorem). Let E/Q be an elliptic curve with conductor N . Then there
exists a surjective map X0(N) → E.

The modularity theorem, or Shimura-Taniyama conjecture, was proved first for semi-stable curves
by Wiles and Taylor in 1995, as part of the proof of Fermat’s last theorem, and later in full
generality by Breuil, Conrad, Diamond, and Taylor in 2001. As a consequence of the modularity
theorem, the L-function of E will be equal to the L-function of a certain modular form of weight 2,
and we get the following.

Corollary 9.2. The L-function of E extends to an analytic function C → C.

9.2 Heegner points

Let N be the conductor of an elliptic curve E over Q. Let K be an imaginary quadratic number
field, such that every prime p | N splits in OK . Then there exists an ideal N such that

OK/N ∼= Z/NZ.

Embedding K into C, we get an N -isogeny of elliptic curves over C:

φ : C/OK → C/N−1.

By the theory of complex multiplication the curves C/OK and C/N−1, and the map φ can be
defined over the Hilbert class field H of K. This field H is the maximal abelian unramified
extension of K and the Galois group Gal(H/K) is isomorphic to the class group of OK .

The pair (C/OK , φ) now corresponds to a point x1 ∈ X0(N)(H). Under the map X0(N) → E,
this point maps to a point y1 ∈ E(H). Let y := trH/K(y1) ∈ E(K).

Theorem 9.3 (Gross-Zagier). Let ω be a minimal differential on E. Let c be the Manin constant
of E.8

L′(E/K, 1) =
2
(∫

E(C) ω ∧ iω
)
hNT(y)

c2 · |O∗
K/{±1}| ·

√
|∆K |

.

This means that if the analytic rank of E over K is 1, then we just found a point of infinite
order, and a relation between its Néron-Tate height, some periods and the leading coefficient of
the L-function at s = 1.

8This constant is known to be an integer and is conjectured to always be 1.
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Theorem 9.4 ([Mil11, Thm. 4.4]). If rkan(E) ≤ 1, then we can choose K in such a way
that rkan(EK) = 1.

Proof idea. If E ′ is the K-quadratic twist of E, then rkan(EK) = rkan(E) + rkan(E
′). The L-

function of E ′ can be obtained from the L-function of E by multiplying its coefficients with the
values of a quadratic character χ. This twisted L-function is then studies in work of Waldspurger
for rkan = 1 and work of Bump, Friedberg, and Hoffstein for rkan = 0 to show that K exists.

In case rkan(E) = 1, it then turns out that the point y actually descends to a point in E(Q) up to
torsion, see [Dar04, Prop. 3.11], so we can now use this to find a point in E(Q) of infinite order.

9.3 Euler systems

Recall that the Tate-Shafarevich group X(E/Q) is the subgroup of torsors in H1(GQ, EQ) that
have points everywhere locally. Moreover, we have an exact sequence

0 → E(Q)/nE(Q) → Seln(E) → X(E/Q)[n] → 0.

The way to show that E has rank 0 or 1 equal to the analytic rank, and that X(E/Q) is finite is
by showing that Selℓ(E) ∼= (Z/ℓZ)rkan(E) for all but finitely many primes ℓ, and by giving bounds
for n = pn for the finitely many previously excluded primes p.

The construction of the Heegner point above can be generalised by replacing the maximal or-
der OK by the order Ok,n := Z + nOK . This gives rise to a sequence of points yn ∈ E(Hn),
where Hn is a so-called ring class field of Ok,n; it is a Galois extension of H.

Now, for any finite Galois module T and any place v, there is a pairing induced by the cup product

⟨·, ·⟩v : H1(GQv , T )×H1(GQv , T
∗) → H2(GQv ,Gm) ∼= Q/Z.

The (very rough) idea to bound the Selmer group is to use the Heegner points yn to find ele-
ments h ∈ H1(GQ, E[n]) which have the property that∑

v

⟨hv, σv⟩v = 0,

for all σ ∈ Seln(E). This relation can then be used to bound the order of Seln(E). To learn more
about this, I can recommend [Dar04] or [Rub00].

9.4 BSD is invariant under isogeny

The Birch and Swinnerton-Dyer conjecture is invariant under isogeny. The full proof for the
following theorem can be found in [Mil06].

Theorem 9.5 ([Mil06, Thm. 7.3]). Let A and B be two K-isogenous abelian varieties. Then
BSD holds for A if and only if it holds for B.

Proof. Let f : A → B be an isogeny. For any ℓ coprime to deg(f) the Tate-ℓ-modules Vℓ(A) and
Vℓ(B) are isomorphic, so the L-functions of A and B are the same. The map

f(K) : A(K) → B(K)
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has finite kernel and cokernel, so the algebraic ranks of A and B are also the same. Finally the
kernel of X(f) : X(A) → X(B) is contained in the image of the map

H1(GK , ker(f)) → H1(GK , A),

coming from the long exact sequence coming from 0 → ker(f) → A → B → 0. As H1(GK , ker(f))
is finite, this implies thatX(A) is finite ifX(B) is, and vice verse considering the dual isogeny f∨.
The order of X(A) and X(B) need not be equal, and differ by a factor

| ker(X(f))|
|coker(X(f))|

=
| ker(X(f))|
| ker(X(f∨))|

.

Careful analysis of the interaction of the Néron-Tate height pairing with the isogeny f will show
that

RA

|Ators(K)| · |A∨
tors(K)|

=
| ker(f(K))| · |coker(f∨(K))|
| ker(f∨(K))| · |coker(f(K))|

· RB

|Btors(K)| · |B∨
tors(K)|

.

Finally, the period and Tamagawa numbers change as follows:

PA ·
∏
p

cp(A) =
∏
v

| ker(f(Kv))|
|coker(f(Kv))|

· PB ·
∏
p

cp(B).

Finally, using a large commutative diagram and group cohomology, one finally shows that∏
v

| ker(f(Kv))|
|coker(f(Kv))|

· | ker(X(f))|
| ker(X(f∨))|

=
| ker(f(K))| · |coker(f∨(K))|
| ker(f∨(K))| · |coker(f(K))|

,

which finishes the proof.

9.5 BSD and Weil restriction

Let L/K be a finite extension of number fields.

Definition 9.6 (Weil restriction). Let X be a scheme over L, then the Weil restriction or re-
strictions of scalars ResL/K(X) is a scheme over K for which

ResL/K(X)(T ) = X(T ×K L)

for any K-scheme T .

Example 9.7. Let Gm = Z(xy− 1) ⊂ A2
Q(i) be the multiplicative group over Q(i). To determine

ResQ(i)/Q(Gm), we introduce new variables x1, xi, y1, yi and we substitute x = x1 + i · xi and
y = y1 + i · yi. The relation then becomes

1 + i · 0 = (x1 + i · xi)(y1 + i · yi).

Then ResQ(i)/Q(Gm) is the subscheme Z(x1y1 − xiyi − 1, x1yi + xiy1) of A4
Q.

Theorem 9.8 ([Mil72, Thm. 1]). Let A be an abelian variety over L. Then BSD holds for A if
and only if BSD holds for ResL/K(A).

Corollary 9.9. Suppose L/K is quadratic9 and A is an abelian variety over K. Then BSD holds
for AL if and only if BSD holds for both A and the L-quadratic twist A′ of A.

Proof. BSD holds for AL if and only if it holds for ResL/K(AL). Because ResL/K(AL) is isogenous
to A× A′, the result now follows.

9A similar statement can be made for larger extensions, but then the ‘twists’ involved could actually be abelian
varieties of higher dimension.
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9.6 Parity

The parity conjecture is all about the sign ε(A/K) occurring in the conjectural functional equation
of the L-function. There is a conjecture of what this sign should be, and this is denoted by w(A/K)
and is called the global root number of A over K. This sign is defined as a product

∏
v w(A/Kv)

of local root numbers. The exact definition for these local root numbers is too complicated for
this lecture, see [DokT13].

Fact 9.10. For a elliptic curve E with semi-stable reduction, the local root number is 1 if v
is non-archimedean and E has good or non-split multiplicative reduction, and −1 if v is either
archimedean, or E has split multiplicative reduction.

If you believe in the BSD conjecture, then you will also believe the following.

Conjecture 9.11 (Parity conjecture).

(−1)rk(A/K) = w(A/K).

Similarly, one can define the p∞-Selmer rank rkp(A/K) as the dimension of the vector space

Qp ⊗Zp HomZp

(
lim
n

Selpn(A/K),Qp/Zp

)
.

If X is finite, then rkp(A/K) is equal to rk(A/K).

Conjecture 9.12 (p-parity conjecture).

(−1)rkp(A/K) = w(A/K).

Theorem 9.13 (Dokchitser-Dokchitser). The p-parity conjecture is true for all elliptic curves
over Q and all primes p.

The following example demonstrates how you can get the parity of the rank of an elliptic curve,
assuming finiteness of X, from local computations. Similar methods can be used for the p∞-
Selmer rank.

Example 9.14 ([DokT13, Subsect. 1.3]). Consider two elliptic curves E and E ′ over Q with
Cremona labels 91b1 and 91b2. There exists a 3-isogeny φ : E → E ′ between them. Assume that
X(E/Q) and X(E ′/Q) is finite. Even if we don’t know if BSD holds for E and E ′, we actually
do know that the quotient of the terms on the right hand side of the BSD formula (1.0.1) is 1,
see subsection 9.4.

RE

RE′
=

PE′

PE

·
∏

p cp(E
′)∏

p cp(E)
· |X(E ′/Q)|
|X(E/Q)|

· |E(Q)tors|2

|E ′(Q)tors|2
. (9.6.1)

It is relatively easy to compute PE

PE′
and all cp(E) and cp(E

′). Moreover, the other two factors on

the right hand side of (9.6.1) are squares. Doing this, we find that

RE

RE′
∈ 3 ·Q∗2.

On the other hand, let φ∨ be the dual isogeny and P1, . . . , Prk(E) be generators of the free part
of E(Q). Then

3rk(E) ·RE = det(⟨3Pi, Pj⟩)i,j = det(⟨φ∨φ(Pi), Pj⟩)i,j
= det(⟨φ(Pi), φ(Pj)⟩)i,j = RE′ · [E ′(Q)free : φ(E(Q)free)]

2.

Altogether, we deduce from this that rk(E) = rk(E ′) must be odd.

27



9.7 Relation with Bloch-Kato

What follows here is a very rough interpretation of what is written in [LoZe23]. Consult this
source and other sources for more complete information.

The Bloch-Kato conjecture is some very general conjecture relating the L-function L(V ∗(1), s) to
a so-called Bloch-Kato Selmer group H1

f (GK , V ) associated to some geometric representation V
(e.g. H i

ét(XK ,Qp(n)) for some smooth projective variety X/K):

dim(H1
f (GK , V ))− dim(H0(GK , V )) = ords=0(L(V

∗(1), s).

Example 9.15. Let V = Qp(1). In this case it turns out that ords=0(L(V
∗(1), s)) = r1 + r2 − 1,

where r1 and r2 are the number of real and complex places of K. Moreover, we also get
that dim(H0) = 0 and dim(H1

f ) = rk(O∗
K). So the Bloch-Kato conjecture becomes Dirichlet’s

unit theorem.

Example 9.16. Take V = Vp(E). Then dim(H0) = 0, and H1
f is a certain Selmer group whose

rank is equal to rk(E) if X(E/K)[p∞] is finite. Finally ords=0(L(V
∗(1), s)) = ords=1L(E/K, s),

which demonstrates that Bloch-Kato is a variant of the BSD conjecture.
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